
Swarm intelligence versus direct
cover algorithms in synthesis of
Multi-Valued Logic functions

Mostafa Abd-El-Barr and Kalim Qureshi
Department of Information Science, College of Life Sciences, Kuwait University,

Kuwait City, Kuwait, and

Bambang Sarif
Department of Electrical and Computer Engineering, University of British Columbia,

Vancouver, Canada

Abstract
Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI)
optimization techniques. Information processing using Multiple-Valued Logic (MVL) is carried out using more
than two discrete logic levels. In this paper, we compare two the SI-based algorithms in synthesizing MVL
functions. A benchmark consisting of 50,000 randomly generated 2-variable 4-valued functions is used for
assessing the performance of the algorithms using the benchmark. Simulation results show that the PSO
outperforms the ACO technique in terms of the average number of product terms (PTs) needed. We also
compare the results obtained using both ACO-MVL and PSO-MVL with those obtained using Espresso-MV
logic minimizer. It is shown that on average, both of the SI-based techniques produced better results compared
to those produced by Espresso-MV.We show that the SI-based techniques outperform the conventional direct-
cover (DC) techniques in terms of the average number of product terms required.

Keywords Ant Colony (ACO), Particle Swarm Optimization (PSO), Direct Cover Algorithm (DC), Espresso-

MVL, Multi-Valued Logic (MVL), MVL Function Synthesis, Non-Binary Digital Information Processing

Paper type Original Article

1. Introduction
It is widely recognized by researchers as well as the chip industry that on-chip complex
binary systems exhibit a number of curbs, such as large layout area for interconnections,
limitations of data storage, increased power consumption, and limitation of available
bandwidth. These limitations can bemostly overcome by usingMultiple-Valued Logic (MVL)
systems [1–3]. Digital information processing using MVL is carried out using more than two

ACI
20,1/2

2

© Mostafa Abd-El-Barr, Kalim Qureshi and Bambang Sarif. Published in Applied Computing and
Informatics. Published by Emerald Publishing Limited. This article is published under the Creative
Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create
derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this license may be seen at http://
creativecommons.org/licences/by/4.0/legalcode

Publishers note: The publisher wishes to inform readers that the article “Swarm intelligence versus
direct cover algorithms in synthesis of Multi-Valued Logic functions” was originally published by the
previous publisher of Applied Computing and Informatics and the pagination of this article has been
subsequently changed. There has been no change to the content of the article. This change was
necessary for the journal to transition from the previous publisher to the new one. The publisher
sincerely apologises for any inconvenience caused. To access and cite this article, please use Al-kahtani,
M.S., Karim, L., Khan, N. (2020), “Swarm intelligence versus direct cover algorithms in synthesis ofMulti-
Valued Logic functions”, Applied Computing and Informatics. Vol. ahead-of-print No. ahead-of-print.
https://10.1016/j.aci.2020.03.002. The original publication date for this paper was 10/03/2020.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2210-8327.htm

Received 30 December 2019
Revised 12 February 2020
Accepted 2 March 2020

Applied Computing and
Informatics
Vol. 20 No. 1/2, 2024
pp. 2-19
Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964
DOI 10.1016/j.aci.2020.03.002

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://10.1016/j.aci.2020.03.002
https://doi.org/10.1016/j.aci.2020.03.002

discrete logic levels. MVL-based information processing include arithmetic operations/
processors, memory, and special purpose processors [1]. Reported MVL (sub)-systems have
shown considerable reduction both in time and speed compared to their binary counterparts
[2–5]. It should however be noted that the search space for MVL synthesis problem is huge
when compared to the binary one. There are rðr

nÞ ¼ 44
2 ¼ 232 2-variable 4-valued functions as

compared to 16 2-variable binary functions. This makes exact minimization of MVL
functions prohibitively expensive both in time and complexity. Therefore, modern heuristic
optimization techniques were employed. These algorithms can be classified into iterative
based [6], decomposition-based [7], algebraic based [8], direct cover-based [9–11], and
evolutionary-based algorithms. The latter include Genetic algorithms (GAs) [12–13], Ant
Colony (ACO) [14–15], and PSO-based [16]. Fuzzy-based synthesis of MVL functions has also
been reported in the literature [21].

The Direct Cover (DC) algorithm is an iterative heuristic in the synthesis of MVL
functions [9–11]. Swarm intelligence models (SIMs) are computational models inspired by
real life swarm systems. The two main SIMs are the Ant Colony Optimization (ACO) [25]
and the Particle Swarm Optimization (PSO) [26]. The main idea in the ACO is to model a
given problem as a search conducted by ants for the optimal path guided by a substance
deposited on the path called pheromone. Real ants were found to be skillful in finding the
shortest path between their nests and a food source in the presence of hurdles. Particle
swarm optimization (PSO) is inspired by the observation that birds fly in large groups
and for long distances without collision. It is hypothesized that birds are able to achieve
that through experience-sharing by maintaining an optimum distance between
themselves and their neighbors. Hence, PSO is a search strategy that uses a set of
flying particles with velocities that are dynamically adjusted based on past experience of
individual particle and that of their neighbors in the search space. The PSO algorithm
was first introduced in 1995 [21] and was later on extended as in [22,23]. There has been
growing interest in the use of PSO for optimization problems [25,28,29,35–40,44–46] and
in synthesis of circuits [26,27]. A number of recent research work, books, and book
chapters on the issue of swarm and nature-inspired algorithms have been published in
the literature [47–49]. However, very few articles were reported on the synthesis of MVL
functions, see for example [16].

The paper provides a concise coverage and comparison of both the conventional synthesis
techniques of MVL functions represented by the Direct Cover algorithm and those based on
the emerging functional synthesis techniques using the swarm intelligent-based algorithms.
We aim to provide a useful data analytics for researchers in the area of digital synthesis for
high-radix (beyond binary) logic functions. The paper also illustrates the adaptation of the
discrete PSO algorithms in the area of MVL functional synthesis while showing the adopted
processes used in the selection of the appropriate minterms and the appropriate implicants
(product terms) to cover them.We also provide a comparison among the ACO and the PSO on
one hand and the Espresso-MV standard algorithm on the other hand.

It should be noted that the two swarm intelligence based algorithms ACO and the PSO are
selected in this work because of them being among the well-known swarm intelligence
techniques and also in order to align our work with similar research work identified in the
literature, e.g. [50].

The paper is organized as follows. Section 2 provides some background material. In
Section 3 we provide a coverage of the related work published in the literature. Section 4
covers simulation results conducted using the ACO and the PSO algorithms using a
benchmark consisting of 50,000 4-valued 2-varaible functions. In Section 5 we provide
comparison among the results obtained out of the simulation conducted in Section 4. In
Section 6 we provide a number of concluding remarks.

Swarm
intelligence
versus direct

cover algorithms

3

2. Background material
This section provides enough of the foundation material needed to make the paper self-stand
and to help the reader to follow through the paper easily and with the minimum interruption.

Table 1 shows the MVL logic operators used in this paper [15].

Definition 1 [15]: Define an n-variable r-valued function, f ðXÞ, as a mapping f : Rn
→R.

In the above definition R ¼ f0; 1; � � � ; r− 1g is a set of 5 r logic
values with r≥ 2 and X ¼ fx1; x2; � � � ; xng is a set of r-valued n
variables. An example 4-valued (r4), 2-variable (n 5 2) function is
shown in Figure 1.

Definition 2 [15]: Define a product term (PT), Pðx1; x2; � � � ; xnÞ, as the minimum of a set
of window literals such that Pðx1; x2; . . . ; xnÞ ¼ C$a1xb11 $

a2xb22 $
anxbnn ¼

minðC; a1xb11 ; a2xb22 ; . . . ; anxbnn Þ where ai;bi ∈R; ai ≤ bi and c∈ f1; 2; . . . ;
r− 1g is the value of the product term.

Example: the product terms in Figure 1 include 1, 1$2x31$
1x22; 2$

0x01$
0x32, and 3$1x21$

1x22. In
the first case c ¼ 1; a1 ¼ 2; b1 ¼ 3; a2 ¼ 1; b2 ¼ 2, in the second case c ¼ 2; a1 ¼ 0;
b1 ¼ 0; a2 ¼ 0; b2 ¼ 3 and in the third case c ¼ 3; a1 ¼ 1; b1 ¼ 2; a2 ¼ 1; b2 ¼ 2:

Definition 3 [15]: Define aminterm as the assignment x1 ¼ a1; x2 ¼ a2; � � � ; xn ¼ an, in
an MVL function f ðx1; x2; � � � ; xnÞ if and only if:f ðx1; x2; � � � ; xnÞ≠ 0.
In the above definition ai ∈ f0; 1; . . . ; r− 1g. If the value of aminterm is r,
then it is considered as don’t care and is represented as d. There are
12 minterms in the function shown in Figure 1.

Definition 4 [15]: A PT, Iðx1; x2; � � � ; xnÞ of a function f ðx1; x2; � � � ; xnÞ is called an
implican if f ðx1; x2; � � � ; xnÞ≥ Iðx1; x2; � � � ; xnÞ for all assignments of xi’s.

Example: Figure 1 shows an example 4-valued 2-varaibale function.
The objective of MVL synthesis to find the minimum form of anMVL function that can be

completely or incompletely specified. As indicated above exact minimization of MVL
functions is prohibitively expensive both in time and complexity and that a number of
modern heuristic optimization techniques were employed. These include the direct cover-
based (DC) [9–11], the Ant Colony (ACO) [14,15], and PSO-based [16]. In Section 5we provide a
comparison of the performance of the ACO and the PSO in the context of synthesis of MVL

The operator The logic equation

The window literal axb ¼
� ðr− 1Þ if ða≤ x≤ bÞ

0 otherwise
where a; b∈R and a≤ b. It should be noted that r 5 4 for 4-valued logic.

The truncated sum (tsum) tsumða1; a2; . . . ; anÞ ¼

a1 ⊕ a2 ⊕ . . . ⊕ an ¼
�
a1 þ a2 þ . . .þ an if a1 þ a2 þ . . .þ an < r � 1
r � 1 otherwise

Where ai ∈ R and ⊕ represents the truncated sum operation.
The maximum (MAX) of
two MVL variables MAXðx1; x2Þ ¼

�
x1 if x1 ≥ x2
x2 otherwise

The minimum (MIN) of
two MVL variables MINðx1; x2Þ ¼

�
x1 if x1 ≤ x2
x2 otherwise

Table 1.
MVL operators.

ACI
20,1/2

4

functions. However the following table (adapted from [50]) illustrates the fundamental
difference between the two models of computation.

Having covered the needed background material, we provide a coverage of the DC, ACO,
and the PSO algorithms in Section 3.

3. Related work
3.1 The Direct cover heuristic algorithm for synthesis of MVL functions
The Direct Cover (DC) algorithm is an iterative heuristic in the synthesis of MVL functions
[9–11]. Figure 2 shows an adapted version of the DC.

A detailed analysis of the DC-based algorithms has been conducted jointly by the author
in [17]. The results of such analysis have indicated that improvements to the conventional DC
are still possible [20] and [24]. In the next section, we present the SI-based improvements of the
DC in the form of the Ant Colony (ACO) and the Particle Swarm Optimization (POS).

3.2 The ACO algorithm for synthesis of MVL functions
The main idea in the ACO is to model a given problem as a search conducted by ants for the
optimal path guided by a substance deposited on the path called pheromone. Real ants were
found to be skillful in finding the shortest path between their nests and a food source in the
presence of hurdles. The search is made possible by an indirect communication amongst
the ants. While traveling their way, ants deposit a chemical substance, called pheromone, on

Criteria ACO PSO

Communication
Mechanism

Indirect communication through the
environment (Stigmergy).

Direct communication.

Problem Type Both discrete (combinatorial) and
continuous optimization problems.

Both Continuous and discrete (combinatorial)
optimization problems.

Problem
Representation

Using weighted (construction) graph. Set of n-dimensional points.

Algorithm
Applicability

Problems with predefined source and
destination

Problems where previous and next particle
positions at each point are uniquely defined.

Figure 1.
An example 2-variable

4-valued function.

Figure 2.
Algorithm for

synthesis of MVL
functions using DC

heuristics.

Swarm
intelligence
versus direct

cover algorithms

5

the ground. When they arrive at a decision point, they make a probabilistic choice, biased by
the intensity of pheromone they smell, see Figure 3(a). This behavior has an autocatalytic
effect since choosing a given path increases the likelihood that the same path will be chosen
again by future ants. On their way back, ants are expected to choose the same path with high
probability (due to the increase in the amount of pheromone), see Figure 3(b). As further
pheromone is released, the chosen path will become more attractive for future ants. See
Figure 3(c) [34].

The basic algorithmic steps in an ACO are shown in Figure 4.
A key point in the development of ACO is the selection of an appropriate fitness function.

The fitness function is often formulated as cost minimization of the solution of the given
problem. The ACO algorithm has received much attention and has been incorporated in a
number of optimization problems [16–21,30–33,43].

3.3 The PSO algorithm for synthesis of MVL functions
Particle swarm optimization (PSO) is inspired by the observation that birds fly in large
groups and for long distances without collision. It is hypothesized that birds are able to
achieve that through experience-sharing by maintaining an optimum distance between
themselves and their neighbors. Hence, PSO is a search strategy that uses a set of flying
particles with velocities that are dynamically adjusted based on past experience of individual
particle and that of their neighbors in the search space. The PSO algorithm was first
introduced in 1995 [21] and was later on extended as in [22,23]. There has been growing
interest in the use of PSO for optimization problems [25,28,29,35–40] and in synthesis of
circuits [26,27]. However, very few articles were reported on the synthesis of MVL functions,
see for example [16]. The basic algorithmic steps in a PSO are shown in Figure 5.

Figure 3.
Illustration of the ants’
behavior [34].

Figure 4.
ACO basic
algorithmic steps.

ACI
20,1/2

6

4. Simulation of the algorithms
In this section we present a coverage of the simulation process conducted using the ACO and
the PSO algorithms introduced in Section 3 above. The simulation conducted among the
algorithms is made using a set of a benchmark consisting of 50,000 randomly generated 2-
variable 4-valued functions. The main characteristics of the generated benchmark are
illustrated below. As can be seen the number of minterms in the benchmark ranges from 6 to
16. The number of functions in each range is illustrated in the table below. For example there
are 500 functions each has 16 minterms, 9000 function seach has 11 minterms, and 75
functions each has 6 minterms.

4.1 Ant Colony synthesis technique (ACO-MVL)
In the ACO-MVL, use is made of the ants searching strategy in finding the best minterms
cover using the right set of implicants. The minterms coverage process is performed
iteratively, until all minterms in the table is covered. Upon selecting a minterm (or an
implicant) an ant puts some pheromone trails on it. This will cause the next ant performs
selection based on the additional pheromone information. This positive feedback process
drives the selection to the best solution (see Figure 6) [15].

The daemon_action() function is used to initialize the pheromone value at the beginning
of all ant’s movement and also whenever stagnancy in the solution is found. Based on the
output of the fitness calculations the selected minterms and implicants are updated. The
next generation of ants will then use the newly updated pheromone values to guide their
selection.

functions 500 2700 6600 1050 1130 9000 5450 2500 1100 275 75
minterms 16 15 14 13 12 11 10 9 8 7 6

Figure 5.
PSO basic

algorithmic steps.

Figure 6.
ACO-MVL algorithm.

Swarm
intelligence
versus direct

cover algorithms

7

4.1.1 Solution representation. According to the ACO-MVL, a tabular form is used to
represent a given MVL function. A bag whose size is equal to the size of the function’s truth
table is used to store all selected implicants. Each implicant is represented by a string of
integers consisting five integer attributes as follows (in sequence): the constant value of the
implicant, the first and second value of the literal (a and b in Table 1) of the first variable in the
implicant representation, and followed by the first and second value of the literal (a and b in
Table 1) of the second variable in the implicant representation. For example, if the implicant is

1: x
1

12
: x2
13
, then the five integer attributes would be 1 1 2 1 3.

It should be noted that performance of the ACO algorithm is dependent on the selection of
a number of parameters including the expectation heuristic factor, the pheromone
evaporation rate, and the number of ants. The ACO parameter selection techniques differ
from a study to the other depending on the types of optimization and the scales of the problem
considered. In our casewe have conducted experimentations on the parameter value selection
using the (expectation) heuristic value ηM and the pheromone evaporation τM and we have
developed ameasure of the probability of choosing amintermM as explained below in Eq. (1).
We have also adopted a similar approach in the selection of the parameters for the implicant
(product term) and have developed to measure the probability for choosing an implicant, L as
explained below in Eq. (2). Our approach in developing the measures below is inspired by the
approach used in [51].

4.1.2Minterm selection.A stochastic process of RouletteWheel is used in the selection of a
minterm. Two factors affect the probability of choosing a minterm. These are the pheromone
value and a heuristic value. The first factor is obtained from pheromone trails of previous
ants. The second factor is the fuzzy weighted averaging of minterm’s selection criteria. The
probability of choosing minterm M is computed as:

p ¼ τM$ηMP
τM$ηM

(1)

where τM represents the pheromone value of the mintermM and ηM represents the heuristic
value of minterm M.

4.1.3 Implicant selection.A stochastic process of Roulette Wheel is used in the selection of
an implicant. Two factors affect the probability of choosing an implicant. These are the
pheromone value and a heuristic value. The first factor is obtained from pheromone trails of
previous ants. The second factor is the fuzzy weighted averaging of implicants’s selection
criteria. The probability of choosing implicant L is computed as:

p ¼ τL$ηLP
τL$ηL

(2)

where τL represents the pheromone value of implicant L and ηL represents the heuristic value
of literal L (fuzzy weighted averaging of literal’s L selection criteria).

4.1.4 Fitness function. The Functional fitness, Ff ¼ Nh −Nm, whereNh5 the number of
mintermmatching between the two truth tables andNm ¼ the number of mismatch between
the two truth tables. The Objective Fitness, Fo ¼ ð100−NpÞ=100, where Np is the number
of product terms needed to cover the function. A chromosome with the highest functional
fitness is considered as the best solution. In case of a tie, the chromosome with the highest
objective functional is selected.

4.1.5 Numerical results. The ACO-MVL algorithm was applied to a benchmark consisting
of 50,000 randomly generated 2-variable 4-valued functions. The following parameters
were used:

Number of populations (NP) 5 20

ACI
20,1/2

8

Maximum number of Iterations (MI) 5 100
Maximum number of Runs 5 (MR) 10
Pheromone evaporation rate (RHO) 5 0.95
The following two measures were recorded:

1. SRm≡ Successful Rate (number of successful iterations divided by the total number of
runs)

2. PT ≡ Number of Product Terms.

Table 2 shows the average number of Product Terms (#PT) needed with respect to the
number of minterms of the MVL function used in the benchmark (functions with minterms
ranging from 6 to 16 are used) as well as for the conventional DC-based algorithms (ARM [11],
BS [9], and DM [10]).

The results in the table show the ACO-MVL algorithm outperforms the DC-based
algorithms for all cases. The table also shows that the maximum percentage improvement
and the minimum percentage improvement achieved by the ACO-MVL are 12.8% and 0.3%,
respectively. It should be noted that the achieved improvements should be considered in the
context that the simulated benchmark is representing a population of 416 functions. Figure 7
illustrates this comparison. An overall comparison between the SI-based techniques and the
espresso-MV logic minimizer tools is provided in Section 3.

4.2 The particle swarm synthesis technique (PSO-MVL)
We motivate the discussion in this section by considering the function given in Figure 8.

Notice that based on the representation introduced in [13], the MVL function shown in
Figure 8 is represented as: ‘0000000023102200. The coverage relation between the minterms
of the function and the implicants is depicted in Figure 9.

4.2.1 Particle representation. A string consisting of five numbers is used to represent an
implicant [13]: the first number represents the value of the implicant, the next two numbers
represent the range of the literal of the first variable (a and b in Table 1) while the last two
numbers represent the range of the literal of the second variable (a and b inTable 1). Consider,
for example, the 4-valued function given in Figure 9. The two implicants (fully or partially)
that cover the minterm 31,122 are 11,222 and 20,123 (see Figure 10).

It should be that the performance of the PSO algorithm is dependent on a number of
parameters including the swarm size, the particles velocities, the cognitive coefficient, and the
particle positions. In our case, we have used the same list of parameters except that for the
particle velocities. In our extermination and due to the discrete nature of the MVL synthesis
problem we have adopted the discrete PSO approach introduced in [22,23]. Accordingly, we
introduce the term particle displacement (rather than particle velocity) and used it instead.
Please refer to the set of Eq. (4) in the paper. We have presented the obtained results due to the
effect of the swarmsize and the number of iterations inTable 4 in the paper. In our testwe used:
c15 1, c25 c35 0.5 and the number of runs5 10. Notice that c1 and c2 represent the cognitive
coefficients. As a result of our experimentations, we found out that most appropriate value for
Vmax is either 4 or 5.A value ofVmax5 5 has been used in testing the PSO-MVLAlgorithm.Our
developed model to compute the particle displacement is shown below in Eq. (4).

4.2.2 Particle fitness function. The Functional fitness is computed as Ff¼ Nh−Nm,
where Nh is the number of minterm match and Nm is the number of minterms mismatch
between the truth table of the original and the obtained functions. The objective fitness is
computed as Fo 5 (100 � Np)/100, where Np is the number of product terms needed to
cover the function. The selection of the best obtained solution is done on two levels: First
the highest functional fitness function and in case of a tie the value of objective fitness
will used.

Swarm
intelligence
versus direct

cover algorithms

9

#
m
in
te
rm

s
16

15
14

13
12

11
10

9
8

7
6

#
fu
n
ct
io
n
s

50
0

27
00

66
00

10
50

11
30

90
00

54
50

25
00

11
00

27
5

75
#
P
T
(A
R
M
)
[1
1]

7.
59

8.
30

8.
36

8.
28

8.
05

7.
71

7.
32

6.
87

6.
31

5.
73

5.
13

#
P
T
(B
S
)
[9
]

7.
56

8.
31

8.
41

8.
35

8.
10

7.
76

7.
37

6.
88

6.
32

5.
75

5.
15

#
P
T
(D
M
)
[1
0]

7
7.
51

7.
57

7.
54

7.
38

7.
13

6.
83

6.
47

6.
02

5.
53

4.
97

#
P
T
(A
C
O
-M

V
L
)
[1
4]

6.
73

7.
05

7.
16

7.
18

7.
09

6.
9

6.
66

6.
36

5.
93

5.
48

4.
96

M
ax

im
p
ro
v
em

en
t
(%

)
12
.8

12
.4

12
.4

12
.4

12
.4

12
.4

12
.4

12
.4

12
.4

12
.4

12
.4

M
in

im
p
ro
v
em

en
t
(%

)
4

6.
5

5.
7

5
4.
2

3.
3

2.
6

1.
8

1.
5

0.
9

0.
3

Table 2.
Average #PTs needed
for realization of MVL
Functions of the
benchmark.

ACI
20,1/2

10

Example:. Figure 10 shows an example of three particles in the swarm whose elements at
time t.

Table 3 illustrates the computation of the particle fitness function as explained above.
The results displayed in Table 3 indicate that particles 2 and 3 supersede particle 1 in

representing the example function. Although the functional fitness of the two particles show
a tie (a score of 16 in each) however the overall fitness shows superiority of particle 3 due to
the weight added by the objective function. Therefore, particle 3 is considered the best
possible solution for the given MVL function.

4.2.3 Particle movement. The discrete nature of the MVL synthesis problem necessitates
adopting the discrete PSO approach introduced in [22,23]. Accordingly, we introduce the term
particle displacement (rather than particle velocity) and introduce the following to compute the
particle displacement (Dtþ1,i):

Figure 7.
Average #PTs using

ACO-MVL versus
those achieved using
DC-based technique.

Figure 8.
Example MVL

function.

Figure 9.
Coverage relation

between minterms and
implicants for function

shown in Figure 8.

Swarm
intelligence
versus direct

cover algorithms

11

DSt;i ¼ c2r2ðPi;t � Xt;iÞ
DGt;i ¼ c3r3ðPg;t � Xt;iÞ
Dtþ1;i ¼ c1Dt;i þ DSt;i þ DGt;i

(4)

In the above computation we useDSt,i to represent the displacement of particle i at time step t
due to particle best self- experience andDGt,i to represent the displacement of particle i at time
step t due to the global experience. We use Xt,i to represent the position of particle i at time
step t, Pi,t to represent the current best position at time step t, and Pg,t to represent the current
global best position at time step t, while c1, c2, c3 represent the social/cognitive confidence
coefficients, and r2, r3 are two random numbers.

As can be seen, the particle displacement (Dtþ1,i) consists of three components: (Dt,i),
(DSt,i), and (DGt,i). The new particle position is formulated as follows:

Xtþ1;i ¼ ðXt;i þ DSt;iÞ þ DGt;i þ c1Dt;i: (5)

The PSO algorithm is illustrated in Figure 11 [16].

Number of iterations
Number of Particles

20 50 100

1000 7.92 7.59 7.40
2000 7.67 7.39 7.25
5000 7.40 7.20 7.11

Particle The obtained Truth Table Nh Nm Ff NP Fo Fitness

1 0000000033102200 15 1 14 3 0.97 14.97
2 0000000023102200 16 0 16 4 0.96 16.96
3 0000000023102200 16 0 16 2 0.98 16.98

Figure 10.
Example of particle
representation.

Table 4.
Average numbers of
PTs for different
values of particles and
iterations.

Table 3.
Fitness calculation for
particle shown in
Figure 11.

ACI
20,1/2

12

4.2.4 Numerical results.We have tested the proposed PSO-MVL algorithm using a bench
mark consisting of 50,000 randomly generated 2-variable 4-valued functions. The results
obtained are reported in Table 4.

We report in this table the average number of product terms (PTs) needed to cover a given
function. We report the obtained results for different number of particles and different
number of iterations. In our test we used: c15 1, c25 c35 0.5 and the number of runs5 10.
As a result of our experimentations, we found out that most appropriate value for Vmax is
either 4 or 5. A value ofVmax5 5 has been used in testing the PSO-MVLAlgorithm. It should
be noted that a gradual decrease in the number of product terms (PTs) needed to synthesize a
given function occurs as we increase the number of particles and/or iterations used.

4.2.4.1 An observation that lead to a modification in the PSO-MVL. Two example 4-valued
2-variable functions are shown in Figure 12. Notice that F2 is the complement of F1. While
F1requires at least six implicants to represent, F2 requires only four implicants (circled in the
figure). If we synthesize F2 and use an extra inverterwewill need a total of 5 gates. This is still
less than synthesizing F1. We have made use of such cases by modifying PSO-MVL
algorithm in away to synthesize both the givenMVL function and its complement and collect
the synthesis which requires less number of implicants taking into consideration the extra
inverter gate needed if the complement of the function is synthesized.

Table 5 shows the results obtained using the modified PSO-MVL in comparison with the
DC-based conventional heuristics for different functions having different number of minters.

In this table we present the average number of minterms required to synthesize a bench
mark consisting of 50,000 2-variable 4-valued functions having minterms ranging from 6 to
16. For a comparison purpose, we also report the results obtained for three other synthesis
algorithms: the ARM [11], the BS [9], and the DM [10]. The maximum and minimum
percentage improvement for each of the 11 categories of functions is also computed and
reported in the table. The maximum improvement achieved by the modified PSO-MVL is
31.2% (in the case of functions having 11minterms) and theminimum improvement achieved
is 7.9% (in the case of functions having 6 minterms). The results shown in Table 5 is
illustrated in Figure 13.

Figure 11.
The PSO algorithm for

MVL synthesis.

Figure 12.
Example function and

its complement
function.

Swarm
intelligence
versus direct

cover algorithms

13

#
m
in
te
rm

s
16

15
14

13
12

11
10

9
8

7
6

#
fu
n
ct
io
n
s

50
0

27
00

66
00

10
,5
00

11
,3
00

90
00

54
50

25
00

11
00

27
5

75
#
P
T
(A
R
M
)
[1
1]

7.
59

8.
30

8.
36

8.
28

8.
05

7.
71

7.
32

6.
87

6.
31

5.
73

5.
13

#
P
T
(B
S
)
[9
]

7.
56

8.
31

8.
41

8.
35

8.
1

7.
76

7.
37

6.
88

6.
32

5.
75

5.
15

#
P
T
(D
M
)
[1
0]

7
7.
51

7.
57

7.
54

7.
38

7.
13

6.
83

6.
47

6.
02

5.
53

4.
97

#
P
T
(P
S
O
-M

V
L
)
[1
5]

5.
79

6.
86

6.
93

6.
89

6.
76

6.
57

6.
33

6.
06

5.
70

5.
27

4.
73

M
ax

im
p
ro
v
em

en
t
(%

)
31
.2

30
.7

30
.7

30
.7

30
.7

3
1
.2

30
.7

30
.7

30
.7

30
.7

30
.7

M
in

im
p
ro
v
em

en
t
(%

)
21

21
21

21
21

9.
5

9.
3

9.
5

9.
2

8.
5

7
.9

Table 5.
Average PT with
Respect to Different
Number of Minterms of
MVL Functions.

ACI
20,1/2

14

5. A comparison
In this section we provide two main comparisons. The first is among the two Swarm
Intelligence based algorithms used for synthesis of MVL functions, i.e. the ACO-MVL and the
PSO-MVL. The second comparison is among the PSO-MVL and ACO-MVL on one side with
the results obtained using espresso-MVL logic minimizer. Our basis for comparison is the
benchmark consisting of 50,000 2-variable 4-vauled randomly generated function. Table 6
shows a summary of the results obtained for the results obtained for PSO-MVL and those
obtained for ACO-MVL for synthesizing the 50,000 benchmark functions.

The results shown in Table 6 indicate that on average the number of product terms (#PTs)
needed to synthesize a given function using the PSO-MVL is lower than the number of those
needed to synthesize the same function using ACO-MVL. The maximum percentage
improvement in the number of product terms obtained using PSO-MVL over the ACO-MVL
is 16.3% (in the case of functions with 16 minterms) while the minimum percentage
improvement is 3.9% (in the case of functions having 7 minterms). Over all simulated 50,000
functions, the average percentage improvement is 5.4%. It should be noted that 5.4%
represents a considerable improvement given that the simulated randomly generated functions
are representative of a population consisting of 416 functions. We also observe that as the
number ofminterms in a given function increases, the percentage improvement decreases. This
can be attributed to the observation that as the number of minterms increases, the likelihood of
an ant finding a solution increases and hence the improvement in the number of PTs achieved
by the ACO-MVL algorithm. Figure 14 illustrates this comparison.

The results show that on average both ACO-MVL and PSO produce better number of
product terms for the benchmark functions. The average percentage improvement is 6% in

#minterms # functions #PTS (ACO-MVL) #PTs (PSO-MVL) (%) improvement

16 500 6.730 5.786 16.3
15 2700 7.054 6.860 2.8
14 6600 7.163 6.927 3.4
13 10,500 7.182 6.886 4.3
12 11,300 7.086 6.762 4.8
11 9000 6.904 6.569 5.1
10 5450 6.660 6.331 5.
9 2500 6.356 6.055 5.0
8 1100 5.934 5.697 4.2
7 275 5.480 5.274 3.9
6 75 4.960 4.733 4.8

Total 5 50000 Average 5 5.4%

Figure 13.
Average #PTs

achieved using PSO
versus those achieved

using existing
synthesis techniques.

Table 6.
Comparison between
ACO-MVL and PSO-
MVL in synthesis of

the benchmark
functions.

Swarm
intelligence
versus direct

cover algorithms

15

Note(s): The Espresso logic minimizer is a computer program using heuristic

and specific algorithms for efficiently reducing the complexity of digital electronic

gate circuits. Espresso was originally developed for binary logic at IBM [41].

A variant called Espresso-MV has been introduced in 1986 under the title ‘‘Multiple-

Valued Logic Minimization for PLA Synthesis” [42]. We have simulated the same

set of 50,000 randomly generated benchmark MVL function using Espresso-MV.

The obtained results are shown in Table 7. The table also shows the results obtained

using both ACO-MVL and PSO-MVL.

#
minterms # functions

#PTs
ACO-
MVL

#PTs
PSO-
MVL

#PTs
Espresso-

MV

% Improvement
ACO-MVL vs.
Espresso-MV

% Improvement
PSO vs. Espresso-

MV

16 500 6.730 5.786 8.36 24.2 44.5
15 2700 7.054 6.860 8.06 14.3 17.5
14 6600 7.163 6.927 7.76 8.3 12.0
13 10,500 7.182 6.886 7.47 4.0 8.5
12 11,300 7.086 6.762 7.16 1.0 5.9
11 9000 6.904 6.569 7.48 8.3 13.9
10 5450 6.660 6.331 6.80 2.1 7.4
9 2500 6.356 6.055 6.41 0.8 5.9
8 1100 5.934 5.697 5.99 0.9 5.1
7 275 5.480 5.274 5.53 0.9 4.9
6 75 4.960 4.733 5.01 1.0 5.9

Total 5 50000 Average 5 6.0 Average 5 11.9

Figure 14.
Average PT achieved
using ACO-MVL and
PSOThe second
comparison we have
conducted was to
compare the results
obtained using both of
the Swarm-
Intelligence-based
techniques against
those obtained using
Espresso-MV logic
minimizer [40].

Figure 15.
Average #PT achieved
using ACO-MVL and
PSO-MVL versus those
achieved using
Espresso-MV.

Table 7.
Comparison among
ACO-MVL, PSO-MVL,
and Espresso-MV in
synthesis of the
benchmark.

ACI
20,1/2

16

the case of ACO-MVL and it is 11.9% in the case of the PSO-MVL. Figure 15 illustrates this
comparison.

6. Concluding remarks
This paper provides a review and comparison on the performance evaluation of the Ant
Colony (ACO) and the Particle Swarm Optimization (PSO) heuristic techniques in the
synthesis of MVL functions. This evaluation is provided on two levels: Swarm-Intelligence
(SI)-based versus conventional Direct-Cover (DC)-based algorithms and between the two SI-
based algorithms. The covered algorithms were simulated and tested using a benchmark
consisting of 50,000 randomly generated 2-variable 4-valued functions. The average #PTs
needed is used as a criterion in comparing the performance of all considered algorithms. The
results obtained indicate that the SI-based techniques outperform the conventional DC in
terms of the average #PTs required to realize a given MVL function. Between the two SI-
based algorithms, the technique based on the PSO produces better overall results. The
performance evaluation show also that the results obtained using both the SI-based
algorithms outperform the results obtained using the espresso-MVL logic minimizer. It is
shown that both the ACO and the PSO outperform the Espresso-MVL algorithm in the
minimization ofMVL functions. The work presented in this publication considers using ACO
and PSO in the synthesis of 4-valued logic functions and compares the results to those
obtained conventional using the direct-cover techniques. Application of other swarm
intelligence techniques, e.g. Genetic Algorithms or Artificial Bee Colony for 4-valued or
higher-radix logic is not covered in the article.

References

[1] (Eds.), “Beyond Two: Theory and Applications of Multiple-Valued Logic”, 2004.

[2] E. Dubrova, Multiple-valued logic in VLSI design, J. Soft Comput. (2002) 1–17.

[3] K. Naiff, D. Rich, K. Smalley, A four-state ROM using multilevel process technology, IEEE J.
Solid-State Circ. 19 (2) (1984) 174–179.

[4] T. Hanyu, M. Kameyama, A 200 MHz pipelined multiplier using 1.5 V-supply multiple-valued
MOS current-mode circuits with dual-rail source-coupled logic, IEEE J. Solid-State Circ. 30 (11)
(1995) 1239–1245.

[5] V. Patel, K. Gurmurthy, Arithmetic operations in multi-valued logic, Int. J. VLSI Commun. Syst.
(VLSICS) 1 (1) (2010) 21–32.

[6] R. Hong, D. Ostapko, A heuristic approach for logic minimization, IBM J. Res. Dev. 18 (5) (1974)
443–458.

[7] C. Files, M. Perkowski, New multi-valued functional decomposition algorithms based on MDDs,
IEEE Trans. CAD 19 (9) (2000) 1081–1086.

[8] J.-H. Goa, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T. Villa, and R. Brayton,
“Optimization of multi-valued multi-level networks”, In Proceedings of the International
Symposium on Multiple-Valued Logic, pp. 168–177, 2002.

[9] P. Besslich, Heuristic minimization of MVL functions: a direct cover approach, IEEE Trans.
Comput. 35 (2) (1986) 134–144.

[10] G. Dueck, D. Miller, A Direct Cover MVL Minimization Using the Truncated Sum, In Proceedings
of the International Symposium on Multiple-Valued Logic, pp. 221-226, 1987.

[11] G. Promper, J. Armstrong, Representation of multiple-valued functions using the direct cover
method, IEEE Transactions on Computers, pp. 674–679, 1981.

[12] Y. Hata, T. Hayase, N. Hozumi, K. Yamato, Multiple-Valued Logic Minimization by Genetic
Algorithms, In Proceedings of 27th IEEE International Symposium on Multiple-Valued Logic,
pp. 97–102, 1998.

Swarm
intelligence
versus direct

cover algorithms

17

[13] B. Sarif, M. Abd-El-Barr, Synthesis of MVL Functions – Part I: The Genetic Algorithm Approach,
In Proceedings of the International Conference on Microelectronics, pp. 154–157, 2006.

[14] M. Abd-El-Barr, B. Sarif, “Synthesis of MVL Functions – Part II: The Ant Colony Optimization
Approach”, In Proceedings of the International Conference on Microelectronics, pp. 158–161, 2006.

[15] M. Abd-El-Barr, Evolutionary techniques in synthesis of multiple-valued logic functions, Int. J.
New Comput. Arch. Appl. 2 (3) (2012) 411–422.

[16] B. Sarif, M. Abd-El-Barr, Functional Synthesis using Discrete Particle Swarm Optimization, In
Proceedings 2008 IEEE Swarm Intelligence Symposium, St. Louis, USA< September 2008, pp. 1–8.

[17] M. Abd-El-Barr, L. Al-Awami, Analysis of Direct Cover Algorithms for Minimization of MVL
Functions, In Proceedings of the 15th International Conference on Microelectronics, pp. 308–
312, 2003.

[18] G. Dueck, J. van Rees, On the Maximum Number of Implicants Needed to Cover a Multiple-Valued
Logic Function Using Window Literals, In Proceedings of the International Symposium on
Multiple-Valued Logic, pp. 280–286, 1991.

[19] M. Dorigo, T. Stutzle, The Ant Colony Optimization Meta-heuristic: Algorithms, Applications and
Advances, In Handbook of Meta-heuristics, Kluwer Academic Publishers, pp. 251–285, 2002.

[20] B. Sarif, B, M. Abd-El-Barr, Fuzzy-based Direct Cover Algorithm for Synthesis of Multiple-Valued
Logic Functions, In proceedings of the IASTED on Circuits and Systems, Hawaii, pp. 625–
630, 2008.

[21] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International
Conference on Neural Networks, Piscataway, 1995, pp. 1942–1948.

[22] J. Kennedy, R. Eberhart, A discrete binary version of the particle swarm algorithm, in: IEEE
International Conference on Systems, Man, and Cybernetics, 1997, pp. 4104–4108.

[23] Y. Wang, Y. Wu, Frequency graphs for travelling salesman problem based on ant colony
optimization, Int. J. Comput. Intelligence Appl. 18 (3) (2019) 16, https://doi.org/10.1142/
S1469026819500160.

[24] M. Abd-El-Barr, B. Sarif, Weighted and ordered direct cover algorithms for minimization of MVL
Functions, in: Proceedings 37th International Symposium on Multiple-valued Logic (ISMVL 2007),
2007, pp. 48–53.

[25] H. Ahmed, J. Glasgow, “Swarm Intelligence: Concepts, Models, and Applications”, Technical
Report 2012–585, Queen’s University, School of Computing, 2012.

[26] C. Reis, J. Machado, Computational intelligence in circuit synthesis, J. Comput. Intelligence 11 (9)
(2007) 1–6.

[27] E. Osaba, J. Del Sel, A. Iglesias, X.-S. Yang, Soft computing for swarm robotics: new trends and
applications, J. Comput. Sci. 39 (2020) 101049.

[28] D. Karaboga, B. Akay, A Survey: algorithms simulating bee swarm intelligence, J. Artific.
Intelligence Rev. 31 (2009) 61–85.

[29] J. Pugh, A. Martinoli, Discrete multi-valued particle swarm optimization, in: Proceedings, IEEE
Swarm Intelligence Symposium, 2006, pp. 103–110.

[30] M. Mareli, B. Twala, An adaptive cuckoo search algorithm for optimization, Appl. Comput. Inf. 14
(2018) 103–115.

[31] P. Balaprakash, M. Birattari, T. Stzle, Z. Yuan, M. Dorigo, Estimation-based ant colony optimization
algorithm for the travelling salesman problem, Swarm Intelligence 3 (2) (2009) 223–242.

[32] C.-Y. Lee, Z.-J. Lee, S.-W. Lin, K.-C. Ying, An enhanced ant colony optimization (EACO) applied to
capacitated vehicle routing problem, Appl. Intelligence 32 (2010) 88–95.

[33] O. Korb, T. Stutzle, T. Exner, An ant colony optimization approach to flexible protein ligand
docking, Swarm Intelligence 1 (2) (2007) 115–134.

[34] M. Dorigo, T. Stutzle, Ant Colony Optimization, MIT Press, Cambridge, 2004.

ACI
20,1/2

18

https://doi.org/10.1142/S1469026819500160
https://doi.org/10.1142/S1469026819500160

[35] R. Eberthart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms. Proc.
Congress on Evolutionary Computation, Seoul, 2001.

[36] W. Ghraby, M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, M. Elmaghraby, An approach of
multimodal biomedical image registration utilizing particle swarm optimization, IEEE Trans.
Evol. Comput. (2004).

[37] L. Messerschmidt, A. Engelbrecht, Learning to play games using a PSO-based competitive
learning approach, IEEE Trans. Evol. Comput. (2004).

[38] T. Blackwell, P. Bently, Improved music with swarms, in: Proc. 2002 Congress on Evolutionary
Computation (ECE), 2002, pp. 1462–1467.

[39] Y. Shi, On particle swarm optimization, in: IEEE Neural Network Society Feature Article, 2004,
pp. 8–13.

[40] Y. Valle, G. Venayagmoorthly, S. Mohagheghi, J.-C. Hernandez, R. Harley, Particle Swarm
optimization: basic concepts, variants and applications in power systems, IEEE Trans. Evol.
Comput. 12 (2) (2008) 171–195.

[41] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic Publishers, ISBN 0-89838-164-9, 1984.

[42] R. Rudell, Multiple-Valued Logic Minimization for PLA Synthesis, Memorandum No. UCB/ERL
M86-65 (Berkeley), 1986.

[43] B. Bachir, A. Ali, M. Abdellah, Multi-objective optimization of an operational amplifier by the ant
colony optimization algorithm, Electric. Electron. Eng. 2 (4) (2012) 230–235.

[44] J. Wang, S. Jin, S. Qin, H. Jiang, Swarm intelligence-based hybrid models for short-term power
load prediction, Math. Probl. Eng. 2014 (2014) https://doi.org/10.1155/2014/712417.

[45] T. Ganesan, I. Elamvazuthi, K. Shari, P. Vasani, Swarm and gravitational search algorithms for
multi-objective optimization of synthesis gas production, Appl. Energy (2013) https://doi.org/10.
1016/j.apenergy.2012.09.059.

[46] H. Wang, H. Sun, C. Li, S. Rahnamayan, J.-S. Pan, Diversity enhanced particle swarm optimization
with neighborhood search, Inf. Sci. 223 (2013) 119–135.

[47] S. Chatterjee, A. Sarkar, S. Hore, N. Dey, A. Ashour, V. Balas, Particle swarm optimization trained
neural network for structural failure prediction of multistoried RC buildings, Natural Comput.
Appl. 28 (8) (2017) 2005–2016.

[48] N. Dey, A. Ashour, S. Bhattachayya, Applied Nature-Inspired Computing: Algorithms and Case
Studies, 2019.

[49] N. Dey, Advancements in Applied Meta-heuristic Computing, IGI, 2017.

[50] H.Ahmed, J.Glasgow, Swarm Intelligence: Concepts, Models, and Applications, Schools of
Computing, Queen’s University, Technical Report, 201–585.

[51] Y. Hei, P. Du, Optimal choice of the parameters of ant colony algorithm, J. Convergence Inf.
Technol. 6 (9) (2011) 96–104.

Corresponding author
Mostafa Abd-El-Barr can be contacted at: mostafa.abdelbarr@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Swarm
intelligence
versus direct

cover algorithms

19

https://doi.org/10.1155/2014/712417
https://doi.org/10.1016/j.apenergy.2012.09.059
https://doi.org/10.1016/j.apenergy.2012.09.059
mailto:mostafa.abdelbarr@gmail.com

	Swarm intelligence versus direct cover algorithms in synthesis of Multi-Valued Logic functions
	Introduction
	Background material
	Related work
	The Direct cover heuristic algorithm for synthesis of MVL functions
	The ACO algorithm for synthesis of MVL functions
	The PSO algorithm for synthesis of MVL functions

	Simulation of the algorithms
	Ant Colony synthesis technique (ACO-MVL)
	Solution representation
	Minterm selection
	Implicant selection
	Fitness function
	Numerical results

	The particle swarm synthesis technique (PSO-MVL)
	Particle representation
	Particle fitness function
	Particle movement
	Numerical results
	An observation that lead to a modification in the PSO-MVL

	A comparison
	Concluding remarks
	References

