Search results

1 – 10 of 57
Article
Publication date: 17 October 2023

Derya Deliktaş and Dogan Aydin

Assembly lines are widely employed in manufacturing processes to produce final products in a flow efficiently. The simple assembly line balancing problem is a basic version of the…

Abstract

Purpose

Assembly lines are widely employed in manufacturing processes to produce final products in a flow efficiently. The simple assembly line balancing problem is a basic version of the general problem and has still attracted the attention of researchers. The type-I simple assembly line balancing problems (SALBP-I) aim to minimise the number of workstations on an assembly line by keeping the cycle time constant.

Design/methodology/approach

This paper focuses on solving multi-objective SALBP-I problems by utilising an artificial bee colony based-hyper heuristic (ABC-HH) algorithm. The algorithm optimises the efficiency and idleness percentage of the assembly line and concurrently minimises the number of workstations. The proposed ABC-HH algorithm is improved by adding new modifications to each phase of the artificial bee colony framework. Parameter control and calibration are also achieved using the irace method. The proposed model has undergone testing on benchmark problems, and the results obtained have been compared with state-of-the-art algorithms.

Findings

The experimental results of the computational study on the benchmark dataset unequivocally establish the superior performance of the ABC-HH algorithm across 61 problem instances, outperforming the state-of-the-art approach.

Originality/value

This research proposes the ABC-HH algorithm with local search to solve the SALBP-I problems more efficiently.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Javad Behnamian and Z. Kiani

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this…

Abstract

Purpose

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this research, considering alternative energy sources and simultaneous pickup and delivery led to a decrease in greenhouse gas emissions and distribution costs, respectively.

Design/methodology/approach

Here, this problem has been modeled as mixed-integer linear programming with the traveling and energy consumption costs objective function. The GAMS was used for model-solving in small-size instances. Because the problem in this research is an NP-hard problem and solving real-size problems in a reasonable time is impossible, in this study, the artificial bee colony algorithm is used.

Findings

Then, the algorithm results are compared with a simulated annealing algorithm that recently was proposed in the literature. Finally, the results obtained from the exact solution and metaheuristic algorithms are compared, analyzed and reported. The results showed that the artificial bee colony algorithm has a good performance.

Originality/value

In this paper, medical goods distribution with pharmacological waste collection is studied. The paper was focused on plug-in hybrid vehicles with simultaneous pickup and delivery. The problem was modeled with environmental criteria. The traveling and energy consumption costs are considered as an objective function.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 April 2021

Faruk Bulut, Melike Bektaş and Abdullah Yavuz

In this study, supervision and control of the possible problems among people over a large area with a limited number of drone cameras and security staff is established.

Abstract

Purpose

In this study, supervision and control of the possible problems among people over a large area with a limited number of drone cameras and security staff is established.

Design/methodology/approach

These drones, namely unmanned aerial vehicles (UAVs) will be adaptively and automatically distributed over the crowds to control and track the communities by the proposed system. Since crowds are mobile, the design of the drone clusters will be simultaneously re-organized according to densities and distributions of people. An adaptive and dynamic distribution and routing mechanism of UAV fleets for crowds is implemented to control a specific given region. The nine popular clustering algorithms have been used and tested in the presented mechanism to gain better performance.

Findings

The nine popular clustering algorithms have been used and tested in the presented mechanism to gain better performance. An outperformed clustering performance from the aggregated model has been received when compared with a singular clustering method over five different test cases about crowds of human distributions. This study has three basic components. The first one is to divide the human crowds into clusters. The second one is to determine an optimum route of UAVs over clusters. The last one is to direct the most appropriate security personnel to the events that occurred.

Originality/value

This study has three basic components. The first one is to divide the human crowds into clusters. The second one is to determine an optimum route of UAVs over clusters. The last one is to direct the most appropriate security personnel to the events that occurred.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 24 October 2023

Muhammad Naeem Aslam, Arshad Riaz, Nadeem Shaukat, Muhammad Waheed Aslam and Ghaliah Alhamzi

This study aims to present a unique hybrid metaheuristic approach to solving the nonlinear analysis of hall currents and electric double layer (EDL) effects in multiphase wavy…

Abstract

Purpose

This study aims to present a unique hybrid metaheuristic approach to solving the nonlinear analysis of hall currents and electric double layer (EDL) effects in multiphase wavy flow by merging the firefly algorithm (FA) and the water cycle algorithm (WCA).

Design/methodology/approach

Nonlinear Hall currents and EDL effects in multiphase wavy flow are originally described by partial differential equations, which are then translated into an ordinary differential equation model. The hybrid FA-WCA technique is used to take on the optimization challenge and find the best possible design weights for artificial neural networks. The fitness function is efficiently optimized by this hybrid approach, allowing the optimal design weights to be determined.

Findings

The proposed strategy is shown to be effective by taking into account multiple variables to arrive at a single answer. The numerical results obtained from the proposed method exhibit good agreement with the reference solution within finite intervals, showcasing the accuracy of the approach used in this study. Furthermore, a comparison is made between the presented results and the reference numerical solutions of the Hall Currents and electroosmotic effects in multiphase wavy flow problem.

Originality/value

This comparative analysis includes various performance indices, providing a statistical assessment of the precision, efficiency and reliability of the proposed approach. Moreover, to the best of the authors’ knowledge, this is a new work which has not been explored in existing literature and will add new directions to the field of fluid flows to predict most accurate results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

Article
Publication date: 3 October 2023

Jie Chu, Junhong Li, Yizhe Jiang, Weicheng Song and Tiancheng Zong

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical…

Abstract

Purpose

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical, aerospace and other fields. This paper considers the parameter estimation of the Wiener-Hammerstein output error moving average (OEMA) system.

Design/methodology/approach

The idea of multi-population and parameter self-adaptive identification is introduced, and a multi-population self-adaptive differential evolution (MPSADE) algorithm is proposed. In order to confirm the feasibility of the above method, the differential evolution (DE), the self-adaptive differential evolution (SADE), the MPSADE and the gradient iterative (GI) algorithms are derived to identify the Wiener-Hammerstein OEMA system, respectively.

Findings

From the simulation results, the authors find that the estimation errors under the four algorithms stabilize after 120, 30, 20 and 300 iterations, respectively, and the estimation errors of the four algorithms converge to 5.0%, 3.6%, 2.7% and 7.3%, which show that all four algorithms can identify the Wiener-Hammerstein OEMA system.

Originality/value

Compared with DE, SADE and GI algorithm, the MPSADE algorithm not only has higher parameter estimation accuracy but also has a faster convergence speed. Finally, the input–output relationship of laser welding system is described and identified by the MPSADE algorithm. The simulation results show that the MPSADE algorithm can effectively identify parameters of the laser welding system.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 57