Search results

1 – 5 of 5
Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1072

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 17 November 2023

Matthew Ikuabe, Clinton Aigbavboa and Ernest Kissi

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which…

Abstract

Purpose

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which retards project performance. Hence, the call for the implementation of innovative technologies such as humanoids in the execution of construction projects as it has been proven to be very effective in other sectors while improving productivity and quality of work. Consequently, this study looks at how humanoids can be used in the construction industry and what benefits they can bring.

Design/methodology/approach

The study employed a quantitative approach underpinned in post-positivist philosophical view using questionnaire as the instrument for data collection. The target respondents were construction professionals, and purposive sampling was used, while a response rate of 62.5% was gotten. The methods of data analysis were mean item score, standard deviation and one-sample t-test.

Findings

The findings revealed that humanoids can be used in progress tracking, auto-documentation and inspection and surveillance of tasks in construction activities. Also, the most important benefits of using humanoids in construction work were found to be shorter delivery times, fewer injuries and more accurate work.

Practical implications

The outcome of the study gives professionals and relevant stakeholders in construction and other interested parties' information about the areas where humanoids can be used and their benefits in construction.

Originality/value

The novelty of this study is that it is a pioneering study in South Africa on humanoids' usage in the construction industry. Also, it expands the existing borderline of the conservation of construction digitalisation for enhanced project execution.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1146

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6625

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 5 of 5