Search results

1 – 7 of 7
Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 October 2022

Fatimah A.M. Al-Zahrani

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were…

Abstract

Purpose

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were designed and their molecular shape, electrical structures and characteristics have been explored using the density functional theory (DFT). The results satisfactorily explain that the higher conjugative effect resulted in a smaller high occupied molecular orbital–lowest unoccupied molecular orbital gap (Eg). Both compounds show intramolecular charge transfer (ICT) transitions in the ultraviolet (UV)–visible range, with a bathochromic shift and higher absorption oscillator strength, as determined by DFT calculations.

Design/methodology/approach

The produced PTZ-1 and PTZ-2 sensors were characterized using various spectroscopic methods, including Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H/13CNMR). UV–visible absorbance spectra of the generated D–π–A PTZ-1 and A–π–D–π–A PTZ-2 dyes were explored in different solvents of changeable polarities to illustrate positive solvatochromism correlated to intramolecular charge transfer.

Findings

The emission spectra of PTZ-1 and PTZ-2 showed strong solvent-dependent band intensity and wavelength. Stokes shifts were monitored to increase with the increase of the solvent polarity up to 4122 cm−1 for the most polar solvent. Linear energy-solvation relationship was applied to inspect solvent-dependent Stokes shifting. Quantum yield (ф) of PTZ-1 and PTZ-2 was also explored. The maximum UV–visible absorbance wavelengths were detected at 417 and 419 nm, whereas the fluorescence intensity was monitored at 586 and 588 nm.

Originality/value

The PTZ-1 and PTZ-2 dyes leading to colorimetric and emission spectral changes together with a color shift from yellow to red.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last month (7)

Content type

Article (7)
1 – 7 of 7