Search results

1 – 10 of 60
Article
Publication date: 21 December 2023

Mehran Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji and Ricardo Alves de Sousa

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, AkbariGanji method and Gaussian method, in conjunction…

Abstract

Purpose

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, AkbariGanji method and Gaussian method, in conjunction with the finite element method. The aim is to examine the impact of processing parameters on temperature history.

Design/methodology/approach

Through analytical investigation and finite element simulation, this research examines the influence of processing parameters on temperature history. Simufact software with a thermomechanical approach was used for finite element simulation, while radial basis function, AkbariGanji and Gaussian methods were used for analytical modeling to solve the heat transfer differential equation.

Findings

The accuracy of both finite element and analytical methods was validated with about 90%. The findings revealed direct relationships between thermal conductivity (from 100 to 200), laser power (from 400 to 800 W), heat source depth (from 0.35 to 0.75) and power absorption coefficient (from 0.4 to 0.8). Increasing the values of these parameters led to higher temperature history. On the other hand, density (from 7,600 to 8,200), emission coefficient (from 0.5 to 0.7) and convective heat transfer (from 35 to 90) exhibited an inverse relationship with temperature history.

Originality/value

The application of analytical modeling, particularly the utilization of the AkbariGanji, radial basis functions and Gaussian methods, showcases an innovative approach to studying directed energy deposition. This analytical investigation offers an alternative to relying solely on experimental procedures, potentially saving time and resources in the optimization of DED processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2023

Takia Ahmed J. Al-Griffi and Abdul-Sattar J. Ali Al-Saif

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the electro-osmotic, magnetic field, chemical reaction and porosity using a new analytical method. In addition, the mathematical model presented by the researchers Tripathi and Sharma (2018c) was successfully developed by adding the effect of electro-osmosis and studying the impact of the new addition in the developed model on blood flow.

Design/methodology/approach

A new analytical method was used to find the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. This technique is based on integrating the Akbari-Ganji and the homotopy perturbation methods.

Findings

The results of axial velocity, concentration, temperature and the wall shear stress for blood flow were analyzed in the cases of the absence and presence of electro-osmosis. Furthermore, in these two states of electro-osmosis, a contour plot was created to show the difference in the profile of velocity to the flow of blood when the magnetic field was increased and the altitude of stenosis was increased. The results showed that the new technique is effective and has high accuracy to determine the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. The validity, utility and necessity of the new method were illustrated from the graphs of the new solutions; in addition, there is an excellent agreement with the results of previous studies.

Originality/value

This paper focuses on developing the mathematical model which was presented by the researchers Tripathi and Sharma (2018c), by adding the effect of the electro-osmosis to it, which has been successfully developed. According to the authors’ modest information, the new system has not been studied before. This current problem is solved by using an innovative approach known as the Akbari-Ganji homotopy perturbation method (AGHPM) which has not been used before in two cases: the presence and absence of the effect of electro-osmosis. This new technique afford new with effective and has high accuracy results. Furthermore, the new study (i.e. adding effect of electro-osmosis) with the applications of (variable viscosity, magnetic field, chemical reaction and porosity) illustrated the importance of applying electro-osmosis and how doctors can benefit from it during surgeries through proper use.

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

Article
Publication date: 12 February 2024

Bahram Jalili, Milad Sadinezhad Fard, Yasir Khan, Payam Jalili and D.D. Ganji

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet…

Abstract

Purpose

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet with a nonuniform thickness causes the steady boundary layer flow’s temperature and velocity fields. Our purpose in this research is to use Akbari Ganji method (AGM) to solve equations and compare the accuracy of this method with the spectral collocation method.

Design/methodology/approach

The trial polynomials that will be utilized to carry out the AGM are then used to solve the nonlinear governing system of the PDEs, which has been transformed into a nonlinear collection of linked ODEs.

Findings

The profile of temperature and dimensionless velocity for different parameters were displayed graphically. Also, the effect of two different parameters simultaneously on the temperature is displayed in three dimensions. The results demonstrate that the skin-friction coefficient rises with growing magnetic numbers, whereas the Casson and the local Williamson parameters show reverse manners.

Originality/value

Moreover, the usefulness and precision of the presented approach are pleasing, as can be seen by comparing the results with previous research. Also, the calculated solutions utilizing the provided procedure were physically sufficient and precise.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 December 2017

Jawad Raza, Azizah M. Rohni and Zurni Omar

The purpose of this paper is to investigate different branches of the solution of micropolar fluid in a channel with permeable walls. Moreover, the intention of the study is to…

Abstract

Purpose

The purpose of this paper is to investigate different branches of the solution of micropolar fluid in a channel with permeable walls. Moreover, the intention of the study is to examine the effect of different physical parameters on fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and angular momentum. The governing partial differential equations were transformed into ordinary differential equations by applying suitable similarity transformation. Afterwards, the set of nonlinear ordinary differential equations was solved numerically by a shooting method.

Findings

The study reveals that various branches of the solution of the proposed problem exist only in the case of strong suction.

Originality/value

The investigation of new branches of the solution of non-Newtonian micropolar fluid is relatively difficult as far as the single solution is concern. This study explores the new branches of the solution of a micropolar fluid in a channel with suction/injection. Simultaneous effect of suction Reynolds number and vortex viscosity parameter on velocity and micro-rotation profile is examined for different branches of solution in order to make the analysis more interesting.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 November 2018

K. Ramesh and Sartaj Ahmad Eytoo

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and…

Abstract

Purpose

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and both the plates moving in the direction of flow) of the Ree-Eyring fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the intention of the study is to examine the effect of different physical parameters on the fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and energy equation. The modeling of the present problem is considered in Cartesian coordinate system. The governing equations are non-dimensionalized using appropriate dimensionless quantities in all the mentioned cases. The closed-form solutions are presented for the velocity and temperature profiles.

Findings

The graphical results are presented for the velocity and temperature distributions with the pertinent parameters of interest. It is observed from the present results that the velocity is a decreasing function of Hartmann number. Temperature increases with the increase of Ree-Eyring fluid parameter, radiation parameter and temperature slip parameter.

Originality/value

First time in the literature, the authors obtained closed-form solutions for the fundamental flows of Ree-Erying fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the results of this paper are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 September 2019

Memoona Bibi, Muhammad Sohail and Rahila Naz

The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk…

Abstract

Purpose

The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk. The disk is moving with a constant uniform speed. Governing equations are obtained by using these assumptions in the form of partial differential equations with boundary conditions. These coupled, highly nonlinear equations are transformed into a coupled system of ordinary differential equations by engaging similarity transformation in the rotating frame of reference.

Design/methodology/approach

An efficient and reliable scheme, namely optimal homotopy asymptotic method, is used to obtain the solutions of the arising physical problem, which is further analyzed graphically. After computing the solutions of the arising problem, plots of velocities, temperature and concentration are discussed briefly.

Findings

It has been observed that dimensionless velocity reduced due to magnetic effect between the boundary layer and escalating values of the magnetic parameter upsurges the temperature and concentration profiles. Contour plots and numerical results are given for local numbers like skin friction coefficient, Nusselt number and Sherwood number.

Originality/value

The work presented in this manuscript is neither published nor submitted anywhere for the consideration/publications. It is a novel work.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 April 2022

Nikita Sergeevich Gibanov, Mohammad Mehdi Rashidi and Mikhail Sheremet

The purpose of this paper is to investigate numerically thermal convection heat transfer in closed square and cubical cavities with local energy sources of various geometric…

Abstract

Purpose

The purpose of this paper is to investigate numerically thermal convection heat transfer in closed square and cubical cavities with local energy sources of various geometric shapes.

Design/methodology/approach

The analyzed regions are square and cubical cavities with two isothermally cold opposite vertical walls, whereas other walls are adiabatic. A local energy element of rectangular, trapezoidal or triangular shape is placed on the lower surface of the cabinet. The lattice Boltzmann technique has been used as the main method for the problem solution in two-dimensional (2D) and three-dimensional (3D) formulations, whereas the finite difference technique with non-primitive parameters such as stream function and vorticity has been also used.

Findings

The velocity and temperature fields for a huge range of Rayleigh number 104–106, as well as for various geometry shapes of the heater have been studied. A comparative analysis of the results obtained on the basis of two numerical techniques for 2D and 3D formulations has been performed. The dependences of the energy transfer strength in the region on the shape of energy source and Rayleigh number have been established. It has been revealed that the triangular shape of the energy source corresponds to the maximum values of the velocity vector and temperature within the cavity, and the rectangular shape corresponds to the minimum values of these mentioned variables. With the growth of the Rayleigh number, the difference in the values of these mentioned variables for rectangular and triangular shapes of heaters also increases.

Originality/value

The originality of this work is to scrutinize the lattice Boltzmann method and finite difference method for the problem of natural convection in 2D and 3D closed chambers with a local heated element.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 April 2020

Moses Sunday Dada and Cletus Onwubuoya

The purpose of this paper is to consider heat and mass transfer on magnetohydrodynamics (MHD) Williamson fluid flow over a slendering stretching sheet with variable thickness in…

Abstract

Purpose

The purpose of this paper is to consider heat and mass transfer on magnetohydrodynamics (MHD) Williamson fluid flow over a slendering stretching sheet with variable thickness in the presence of radiation and chemical reaction. All pertinent flow parameters are discussed and their influence on the hydrodynamics, thermal and concentration boundary layer are presented with the aid of the diagram.

Design/methodology/approach

The governing partial differential equations are reduced into a system of ordinary differential equations with the help of suitable similarity variables. A discrete version of the homotopy analysis method (HAM) called the spectral homotopy analysis method (SHAM) was used to solve the transformed equations. SHAM is efficient, and it converges faster than the HAM. The SHAM provides flexibility when solving linear ordinary differential equations with the use of the Chebyshev spectral collocation method.

Findings

The findings revealed that an increase in the variable thermal conductivity hike the temperature and the thermal boundary layer thickness, whereas the reverse is the case for velocity close to the wall.

Originality/value

The uniqueness of this paper is the exploration of combined effects of heat and mass transfer on MHD Williamson fluid flow over a slendering stretching sheet. The Williamson fluid term in the momentum equation is expressed as a linear function and the viscosity and thermal conductivity are considered to vary in the boundary layer.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 June 2021

Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…

Abstract

Purpose

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.

Design/methodology/approach

Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.

Findings

It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.

Originality/value

The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 60