Search results

1 – 10 of 27
Article
Publication date: 23 November 2018

K. Ramesh and Sartaj Ahmad Eytoo

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and…

Abstract

Purpose

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and both the plates moving in the direction of flow) of the Ree-Eyring fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the intention of the study is to examine the effect of different physical parameters on the fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and energy equation. The modeling of the present problem is considered in Cartesian coordinate system. The governing equations are non-dimensionalized using appropriate dimensionless quantities in all the mentioned cases. The closed-form solutions are presented for the velocity and temperature profiles.

Findings

The graphical results are presented for the velocity and temperature distributions with the pertinent parameters of interest. It is observed from the present results that the velocity is a decreasing function of Hartmann number. Temperature increases with the increase of Ree-Eyring fluid parameter, radiation parameter and temperature slip parameter.

Originality/value

First time in the literature, the authors obtained closed-form solutions for the fundamental flows of Ree-Erying fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the results of this paper are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 September 2019

Muhammad Ijaz Khan, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Faisal Javed and Muhammad Waqas

This paper aims to address the flow features of Ree–Eyring fluid between two rotating disks subject to the magnetic field. Heat transfer features are discussed through viscous…

Abstract

Purpose

This paper aims to address the flow features of Ree–Eyring fluid between two rotating disks subject to the magnetic field. Heat transfer features are discussed through viscous dissipation and nonlinear thermal radiation. Impact of thermophoresis and Brownian movement are elaborated. Physical characteristics of entropy generation optimization in nanofluid with homogeneous and heterogeneous chemical reaction are discussed.

Design/methodology/approach

The nonlinear system leads to ordinary one through the implementation of adequate transformation and then tackled analytically for a convergent series solution by homotopy analysis method.

Findings

The prime objective of the present research has been given to investigate entropy generation in Ree–Eyring fluid flow between two rotating disks subjected to the magnetic field. Vital features, namely, Brownian motion and thermophoresis have been addressed. Total entropy rate is computed using the second law of thermodynamics.

Originality/value

No such work yet exists in the literature.

Article
Publication date: 3 May 2019

Muhammad Ijaz Khan, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Faisal Javed and Ahmed Alsaedi

This study aims to examine the flow characteristics of Ree–Eyring fluid between two rotating disks. The characteristics of heat transfer are discussed in presence of viscous…

Abstract

Purpose

This study aims to examine the flow characteristics of Ree–Eyring fluid between two rotating disks. The characteristics of heat transfer are discussed in presence of viscous dissipation, heat source/sink and nonlinear radiative heat flux.

Design/methodology/approach

Nonlinear flow expressions lead to ordinary ones through adequate similarity transformations. The ordinary differential system has been tackled through optimal homotopic method. The impact of different flow variables on the velocity field, entropy generation rate and temperature fields is graphically discussed. The surface drag force and heat transfer rate are numerically examined via various pertinent parameters.

Findings

By minimization of values of stretching parameter and Brinkman number, the entropy generation rate can be controlled. The entropy generation rate enhances for higher values of magnetic parameter, while the Bejan number is decreased via magnetic parameter.

Originality/value

No such work is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 July 2019

Mingyu Zhang, Jing Wang, Yi Liu, Longjie Dai and Zhaohua Shang

The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness…

Abstract

Purpose

The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive.

Design/methodology/approach

In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations.

Findings

It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”.

Research limitations/implications

The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems.

Originality/value

The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 July 2023

Syed Sohaib Zafar, Aurang Zaib, Farhan Ali, Fuad S. Alduais, Afrah Al Bossly and Anwar Saeed

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and…

Abstract

Purpose

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and research projects have been carried out to acquire an understanding of heat transport performance for their functional application to heat conveyance augmentation. The idea of this study is to inspect the entropy production in Darcy-Forchheimer Ree-Eyring nanofluid containing bioconvection flow toward a stretching surface is the topic of discussion in this paper. It is also important to take into account the influence of gravitational forces, double stratification, heat source–sink and thermal radiation. In light of the second rule of thermodynamics, a model of the generation of total entropy is presented.

Design/methodology/approach

Incorporating boundary layer assumptions allows one to derive the governing system of partial differential equations. The dimensional flow model is transformed into a non-dimensional representation by applying the appropriate transformations. To deal with dimensionless flow expressions, the built-in shooting method and the BVP4c code in the Matlab software are used. Graphical analysis is performed on the data to investigate the variation in velocity, temperature, concentration, motile microorganisms, Bejan number and entropy production concerning the involved parameters.

Findings

The authors have analytically assessed the impact of Darcy Forchheimer's flow of nanofluid due to a spinning disc with slip conditions and microorganisms. The modeled equations are reset into the non-dimensional form of ordinary differential equations. Which are further solved through the BVP4c approach. The results are presented in the form of tables and figures for velocity, mass, energy and motile microbe profiles. The key conclusions are: The rate of skin friction incessantly reduces with the variation of the Weissenberg number, porosity parameter and Forchheimer number. The rising values of the Prandtl number reduce the energy transmission rate while accelerating the mass transfer rate. Similarly, the effect of Nb (Brownian motion) enhances the energy and mass transfer rates. The rate of augments with the flourishing values of bioconvection Lewis and Peclet number. The factor of concentration of microorganisms is reported to have a diminishing effect on the profile. The velocity, energy and entropy generation enhance with the rising values of the Weissenberg number.

Originality/value

According to the findings of the study, a slip flow of Ree-Eyring nanofluid was observed in the presence of entropy production and heat sources/sinks. There are features when the implementations of Darcy–Forchheimer come into play. In addition to that, double stratification with chemical reaction characteristics is presented as a new feature. The flow was caused by the stretching sheet. It has been brought to people's attention that although there are some investigations accessible on the flow of Ree-Eyring nanofluid with double stratification, they are not presented. This research draws attention to a previously unexplored topic and demonstrates a successful attempt to construct a model with distinctive characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 January 2021

Mingyu Zhang, Jing Wang, Peiran Yang, Yi Liu, Zhaohua Shang and Longjie Dai

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for…

Abstract

Purpose

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for finite line contact.

Design/methodology/approach

A constitutive equation: Ree-Eyring fluid is used in the calculations. The real chain sizes, i.e. equivalent radius of curvature, bush length, length of the rounded corner area and rounded corner radius, are jointed investigated. Moreover, the effects of the length of the rounded corner area and the radius of rounded corner are investigated.

Findings

It is found that the current standard of the chain might not consider the importance of lubrication, and the lubrication state can be improved effectively by choosing an optimal radius of rounded corner and the length of the corner area.

Originality/value

By optimally selecting sizes, the occurrence of high pressure, high temperature rise and near zero film thickness at the ends of bush, especially under heavier load, can be effectively avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0031/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 24 January 2020

Mingyu Zhang, Jing Wang, Peiran Yang, Zhaohua Shang, Yi Liu and Longjie Dai

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using…

Abstract

Purpose

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated.

Design/methodology/approach

In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations.

Findings

It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively.

Originality/value

Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 March 2020

Mingyu Zhang, Jing Wang, Jinlei Cui and Peiran Yang

The purpose of this paper is to numerically study the variations of oil film pressure, thickness and temperature rise in the contact zone of plate-pin pair in silent chains.

125

Abstract

Purpose

The purpose of this paper is to numerically study the variations of oil film pressure, thickness and temperature rise in the contact zone of plate-pin pair in silent chains.

Design/methodology/approach

A steady-state thermal elastohydrodynamic lubrication (EHL) model is built using a Ree–Eyring fluid. The contact between the plate and the pin is simplified as a narrow finite line contact, and the lubrication state is examined by varying the geometry and the plate speed.

Findings

With increase in the equivalent radius of curvature, the pressure peak and the central film thickness increase. Because the plate is very thin, the temperature rise can be neglected. Even when the influence of the rounded corner region is less, a proper design can beneficially increase the minimum film thickness at both edges of the plate. Under a low entraining speed, strong stress concentration results in close-zero film thickness at both edges of the plate.

Originality/value

This study reveals the EHL feature of the narrow finite line contact in plate-pin pairs for silent chains and will support the future works considering transient effect, surface features and wear.

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2004

Y. Zhang

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip…

Abstract

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip. It is shown that the viscoelastic, viscoplastic and non‐continuum fluids distribute from the inlet zone to the Hertzian contact zone in order for a given operating condition when the load and rolling speed exceed critical values. For the rolling speed below the critical, the distributing fluids from the inlet zone to the Hertzian contact zone in order are viscoelastic and non‐continuum when the load exceeds a critical value. These show a multirheological behavior EHL film, formed in a contact, which may represent a mode of mixed lubrication. For this mode of lubrication, the fluid model should handle both inlet and Hertzian contact zones where the fluids are, respectively, continuum and non‐continuum. A new EHL analysis and theory, therefore needs to be established.

Details

Industrial Lubrication and Tribology, vol. 56 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2018

Zonglin Gu, Caichao Zhu, Huaiju Liu and Xuesong Du

This paper aims to compare the tribological performances of four different types of tooth surface finishing, namely, form grinding, generating grinding, super finishing and…

Abstract

Purpose

This paper aims to compare the tribological performances of four different types of tooth surface finishing, namely, form grinding, generating grinding, super finishing and grinding and coating, and to reveal the details at dry contact nodes.

Design/methodology/approach

Real measured roughness is input to a finite line contact mixed elastohydrodynamic lubrication model developed for helical gear pairs. Their tribological performances are compared. The variation throughout one meshing period is analyzed. The influence of the root mean square (RMS) is studied. The textures are also scaled to the same RMS values to make comparisons while excluding the influence of roughness amplitude.

Findings

Roughness is directly reflected in pressure and film thickness. Average film thickness sees major changes while entering and leaving the single-tooth-contact region. The textures have different performances even under the same RMS. Roughness peaks incurring dry contact are those higher than the smooth-situation film thickness plus the sum of variation in normal approach and elastic deformation compared with the smooth situation. To lower dry contact severity, the surface finishing process should take care of both the overall amplitude and the portion of peaks with maximum height. When RMS value is the same, the latter plays a decisive role.

Originality/value

This paper interprets the differences between the tribological performances of four different types of tooth surface finishing from the aspect of roughness features and presents a way to analyze the details at dry contact nodes.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 27