Search results

1 – 10 of 731
Article
Publication date: 21 August 2023

Tomasz Rogalski, Paweł Rzucidło, Stanisław Noga and Dariusz Nowak

This study presents an image processing algorithm capable of calculating selected flight parameters requested by flight control systems to guide aircraft along the horizontal…

Abstract

Purpose

This study presents an image processing algorithm capable of calculating selected flight parameters requested by flight control systems to guide aircraft along the horizontal projection of the landing trajectory. The parameters identified based on the basics of the image of the Calvert light system appearing in the on-board video system are used by flight control algorithms that imitate the pilot’s schematics of control. Controls were generated using a fuzzy logic expert system. This study aims to analyse an alternative to classical solutions that can be applied to some specific cases.

Design/methodology/approach

The paper uses theoretical discussions and breakdowns to create the basics for the development of structures for both image processing algorithms and control algorithms. An analytical discussion on the first stage was transformed into laboratory rig tests using a real autopilot unit. The results of this research were verified in a series of software-in-the-loop computer simulations.

Findings

The image processing method extracts the most crucial parameters defining the relative position of the aircraft to the runway, as well as the control algorithm that uses it.

Practical implications

In flight control systems that do not use any dedicated ground or satellite infrastructure to land the aircraft.

Originality/value

This paper presents the original approach of the author to aircraft control in cases where visual signals are used to determine the flight trajectory of the aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 February 2023

Wang Jianhong and Ricardo A. Ramirez-Mendoza

This new paper aims to combine the recent new contributions about direct data driven control and other safety property to form an innovative direct data driven safety control for…

Abstract

Purpose

This new paper aims to combine the recent new contributions about direct data driven control and other safety property to form an innovative direct data driven safety control for aircraft flight system. More specifically, within the framework of direct data driven strategy, the collected data are dealt with to get the identified plant and designed controller. After reviewing some priori information about aircraft flight system, a closed loop system with the unknown plant and controller simultaneously is considered. Data driven estimation is proposed to identify the plant and controller only through the ratios of two correlation functions, computed from the collected data. To achieve the dual missions about perfect tracking and safety property, a new notion about safety controller is introduced. To design this safety controller, direct data driven safety controller is proposed to solve one constrain optimization problem. Then the authors apply the Karush–Kuhn–Tucker (KKT) optimality conditions to derive the explicit safety controller.

Design methodology approach

First, consider one closed loop system corresponding to aircraft flight system with the unknown plant and feed forward controller, data driven estimation is used to identify the plant and feed forward controller. This identification process means nonparametric estimation. Second, to achieve the perfect tracking one given transfer function and guarantee the closed loop output response within one limited range simultaneously, safety property is introduced. Then direct data driven safety control is proposed to design the safety controller, while satisfying the dual goals. Third, as the data driven estimation and direct data driven safety control are all formulated as one constrain optimization problem, the KKT optimality conditions are applied to obtain the explicit safety controller.

Findings

Some aircraft system identification and aircraft flight controller design can be reformulated as their corresponding constrain optimization problems. Then through solving these constrain optimization problems, the optimal estimation and controller are yielded, while satisfying our own priori goals. First, data driven estimation is proposed to get the rough estimation about the plant and controller. Second, data driven safety control is proposed to get one safety controller before our mentioned safety concept.

Originality/value

To the best of the authors’ knowledge, some existing theories about nonparametric estimation and tube model predictive control are very mature, but few contributions are applied in practice, such as aircraft system identification and aircraft flight controller design. This new paper shows the new theories about data driven estimation and data driven safety control on aircraft, being corresponded to the classical nonparametric estimation and tube model predictive control. Specifically, data driven estimation gives the rough estimations for the aircraft and its feed forward controller. Furthermore, after introducing the safety concept, data driven safety control is introduced to achieve the desired dual missions with the combination of KKT optimality conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 September 2023

Wang Jianhong and Guo Xiaoyong

This paper aims to extend the previous contributions about data-driven control in aircraft control system from academy and practice, respectively, combining iteration and learning…

Abstract

Purpose

This paper aims to extend the previous contributions about data-driven control in aircraft control system from academy and practice, respectively, combining iteration and learning strategy. More specifically, after returning output signal to input part, and getting one error signal, three kinds of data are measured to design the unknown controller without any information about the unknown plant. Using the main essence of data-driven control, iterative learning idea is introduced together to yield iterative learning data-driven control strategy. To get the optimal data-driven controller, other factors are considered, for example, adaptation, optimization and learning. After reviewing the aircraft control system in detail, the numerical simulation results have demonstrated the efficiency of the proposed iterative learning data-driven control strategy.

Design/methodology/approach

First, considering one closed loop system corresponding to the aircraft control system, data-driven control strategy is used to design the unknown controller without any message about the unknown plant. Second, iterative learning idea is combined with data-driven control to yield iterative learning data-driven control strategy. The optimal data-driven controller is designed by virtue of power spectrum and mathematical optimization. Furthermore, adaptation is tried to combine them together. Third, to achieve the combination with theory and practice, our proposed iterative learning data-driven control is applied into aircraft control system, so that the considered aircraft can fly more promptly.

Findings

A novel iterative learning data-driven strategy is proposed to efficiently achieve the combination with theory and practice. First, iterative learning and data-driven control are combined with each other, being dependent of adaptation and optimization. Second, iterative learning data-driven control is proposed to design the flight controller for the aircraft system. Generally, data-driven control is more wide in our living life, so it is important to introduce other fields to improve the performance of data-driven control.

Originality/value

To the best of the authors’ knowledge, this new paper extends the previous contributions about data-driven control by virtue of iterative learning strategy. Specifically, iteration means that the optimal data-driven controller is solved as one recursive form, being related with one gradient descent direction. This novel iterative learning data-driven control has more advanced properties, coming from data driven and adaptive iteration. Furthermore, it is a new subject on applying data-driven control into the aircraft control system.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1667

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2023

Yaohua Shen and Mou Chen

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based…

Abstract

Purpose

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based on event-triggered mechanism (ETM), nonlinear disturbance observer (NDO) and dynamic surface control (DSC) techniques.

Design/methodology/approach

To estimate unsteady aerodynamic disturbances (UADs) to suppress their adverse effects, the NDO is designed. To avoid taking the derivative of the virtual control law directly and eliminate the coupling term of the system states and dynamic surface errors in the stability analysis, an improved DSC is developed. Combined with the NDO and DSC techniques, a robust backstepping method is proposed to achieve the PSPM. Furthermore, to decrease the deflection frequency of the aircraft actuators, a state-dependent ETM is introduced.

Findings

An ETM-and-NDO-based backstepping method with an improved DSC technique is developed to achieve the PSPM and decrease the deflection frequency of aircraft actuators. And simulation results are presented to verify the effectiveness of the proposed paper.

Originality/value

Few studies have been conducted on the control of the PSPM in which the lateral and longitudinal attitude dynamics are coupled with each other considering the UADs. Moreover, the mechanism that can decrease the deflection frequency of aircraft actuators is rarely developed in existing research. This study proposes an ETM-and-NDO-based backstepping scheme to address these problems with satisfactory performance of the PSPM.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 October 2023

Jacek Mieloszyk, Andrzej Tarnowski and Tomasz Goetzendorf-Grabowski

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing…

Abstract

Purpose

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing, building and testing new UAVs in the configuration of the flying wing. The UAV contains a number of aerodynamic devices that are not obvious solutions and use the latest manufacturing technology achievements, such as 3D printing.

Design/methodology/approach

The design solutions were applied on an airworthy aircraft and checked during test flights. The process was first conducted on the smaller UAV, and based on the test outcomes, improvements were made and then applied on the larger version of the UAV, where they were verified.

Findings

A number of practical findings were identified. For example, the use of 3D printing technology for manufacturing integrated pressure ports, investigation of the adverse yaw effect on the flying wing configuration and the effectiveness of winglet rudders in producing yawing moment.

Practical implications

All designed devices were tested in practice on the flying aircraft. It allowed for improved aircraft performance and handling characteristics. Several of the technologies used improved the speed and quality of aerodynamic device design and manufacturing, which also influences the reliability of the aircraft.

Originality/value

The paper presents how 3D printing technology can be utilized for manufacturing of aerodynamic devices. Specially developed techniques for control surface design, which can affect adverse yaw problem and aircraft handling characteristics, were described.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 September 2023

Navid Mohammadi, Morteza Tayefi and Man Zhu

Dual-thrust hybrid unmanned aerial vehicle (UAV) technology offers a highly robust and efficient system that incorporates the take-off and landing capabilities of rotary-wing…

Abstract

Purpose

Dual-thrust hybrid unmanned aerial vehicle (UAV) technology offers a highly robust and efficient system that incorporates the take-off and landing capabilities of rotary-wing aircraft with the endurance capacities of fixed-wing aircraft. The purpose of this study is to model and control a hybrid UAV in three distinct flight modes: rotary-wing, fixed-wing and over-actuated model.

Design/methodology/approach

Model predictive control (MPC) along with linear models are applied to design controllers for the rotary-wing or vertical take-off and transition to the fixed-wing flight. The MPC algorithm is implemented with two approaches, first in its usual form and then in a new form with the help of tracking error variables as state variables.

Findings

Because the tracking error variables are more compatible with the cost function used in MPC, the results improve significantly. This is especially important for a safe and stable transition from rotary-wing to fixed-wing flight, which should be done quickly. The authors also propose a control allocation strategy with MPC algorithm to exploit the thrust and control inputs of both rotary-wing and fixed-wing systems for the transition phase. As the control system is over-actuated, the proposed algorithm distributes the control signal among the actuators better than the MPC alone. The numerical results show that the flight trajectory is also improved.

Originality/value

The research background is reviewed in the introduction section. The other sections are originally developed in this paper to the best of the authors’ knowledge.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2024

Qiuqi Wu, Youchao Sun and Man Xu

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study…

Abstract

Purpose

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study of human reliability. An information flow field model of human–machine interaction is put forward to help better pinpoint the factors influencing performance and to make up for the lack of a model of information flow and feedback processes in the aircraft cockpit. To enhance the efficacy of the human–machine interaction, this paper aims to examine the important coupling factors in the system using the findings of the simulation.

Design/methodology/approach

The performance-shaping factors were retrieved from the model, which was created to thoroughly describe the information flow. The coupling degree between the performance shaping factors was calculated, and simulation and sensitivity analysis are based on system dynamics.

Findings

The results show that the efficacy of human–computer interaction is significantly influenced by individual important factors and coupling factors. To decrease the frequency of accidents after seven hours, attention should be paid to these factors.

Originality/value

The novelty of this work lies in proposing a theoretical model of cockpit information flow and using system dynamics to analyse the effect of the factors in the human–machine loop on human–machine efficacy.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 731