Search results

1 – 10 of 302
Article
Publication date: 15 February 2024

D.S.N. Senarathna, K.G.A.S. Waidyasekara and S.S.C.G. Vidana

The Heating, Ventilation and Air Conditioning (HVAC) system is a significant energy consumer in built environments, and the building energy consumption could be minimised by…

Abstract

Purpose

The Heating, Ventilation and Air Conditioning (HVAC) system is a significant energy consumer in built environments, and the building energy consumption could be minimised by optimising HVAC controls. Hence, this paper aims to investigate the applicability of Variable Refrigerant Flow (VRF) air conditioning systems for optimising the indoor comfort of buildings in Sri Lanka.

Design/methodology/approach

To address the research aim, the quantitative approach following the survey research strategy was deployed. Data collected through questionnaires were analysed using descriptive statistical tools, including Mean Rating (MR), Relative Important Index (RII) and Standard Deviation (SD).

Findings

The findings revealed that VRF systems are popularly used in Sri Lankan apartment buildings. Furthermore, energy efficiency and comfort were recognised as the most significant top-ranked benefits, while ventilation issues and initial cost were recognised as significant challenges. Moreover, the allocation of trained technicians and provision of proper ventilation through a Dedicated Outdoor Air System (DOAS) were highlighted as applicable mitigation strategies for the identified challenges in VRFs.

Practical implications

The study recommends VRF systems as a suitable technology to ensure energy efficiency, reduce GHG emissions and achieve climate performance within the built environment. The opportunities for adopting VRF systems for developing countries could be explored based on the research findings. The identified challenges would assist the design engineers and facilities professionals to devise suitable strategies to mitigate issues of VRF systems in developing countries.

Originality/value

This research provides empirical proof of the energy efficiency and comfort aspects of VRFs. The study has explored and recommended VRF technology as a beneficial application to overcome the persistent energy crisis in developing countries.

Details

Property Management, vol. 42 no. 4
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 22 August 2023

Xian Yun Tan, Norhayati Mahyuddin, Syahrul Nizam Kamaruzzaman, Norhayati Mat Wajid and Abdul Murad Zainal Abidin

Commercial buildings, which include office buildings, are one of the three major energy-consuming sectors, alongside industrial and transportation sectors. The vast increase in…

Abstract

Purpose

Commercial buildings, which include office buildings, are one of the three major energy-consuming sectors, alongside industrial and transportation sectors. The vast increase in the number of buildings is a positive sign of the rapid development of Malaysia. However, most Malaysian government office buildings tend to consume energy inefficiently due to lack of energy optimization. Most of the previous studies focused on the performance of green buildings in fulfilling the green development guidelines. As such, it is essential to study the energy performance of existing government office buildings that were constructed before most energy-efficient standards were implemented to mitigate energy wastage due to the lack of energy optimization. This study aims to analyse the energy performance of existing non-green Malaysian government office buildings and the factors that influence building energy consumption, as well as to evaluate the efficacy of the existing energy conservation measures.

Design/methodology/approach

This study was conducted by a literature review and case study. The chosen buildings are six government office building blocks located in Kuala Lumpur, the capital city of Malaysia. In this study, a literature review has been conducted on the common factors affecting energy consumption in office buildings. The energy consumption data of the buildings were collected to calculate the building energy intensity (BEI). The BEI was compared to the MS1525:2019 and GBI benchmarks to evaluate energy performance. SketchUp software was utilized to illustrate the solar radiation and sun path diagram of the case study buildings. Finally, recommendations were derived for retrofit strategies based on non-design factors and passive design factors.

Findings

In typical government office buildings, the air-conditioning system consumed the most energy at 65.5%, followed by lighting system at 22.6%, and the remaining 11.9% was contributed by office appliances. The energy performance of the case study buildings is considered as satisfactory as the BEI did not exceed the MS1525:2019 benchmark of 200 kWh/m2/year. The E Block recorded the highest BEI of 183.12 kWh/m2/year in 2020 due to its north-east orientation which is exposed to the most solar radiation. Besides, E Block consists of rooms that can accommodate large number of occupants. As such, non-design factors which include higher occupancy rate and higher cooling demand due to high outdoor temperature leads to higher energy consumption. By considering passive design features such as building orientation and building envelope thermal properties, energy consumption can be reduced significantly.

Originality/value

This study provided a comprehensive insight into the energy performance of Malaysian government office buildings, which were constructed before the energy-efficient standards being introduced. By calculating the BEI of six government office buildings, it is found that the energy performance of the case study buildings fulfils the MS1525 benchmark, and that all their BEIs are below 200 kWh/m2/year. Malaysia's hot and humid climate significantly affects a building's cooling load, and it is found the air-conditioning system is the major energy consumer of Malaysian government office buildings. This study discusses the efficacy of the energy-saving measures implemented in the case study buildings to optimize energy consumption. Recommendations were derived based on the non-design factors and passive design factors that affected the energy consumption of the case study building. It is envisioned that this study can provide practical strategies for retrofit interventions to reduce energy consumption in Malaysian office buildings as well as for office buildings that are in a similar climate.

Details

Open House International, vol. 49 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 6 July 2023

Omprakash Ramalingam Rethnam and Albert Thomas

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes…

Abstract

Purpose

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes essential in this scenario to realize the global net-zero goals. The purpose of the proposed study is to evaluate the impact of the widespread adoption of such guidelines in a building community in the context of mixed-mode buildings.

Design/methodology/approach

This study decentralizes the theme of improving the energy efficiency of the national building stock in parcels by proposing a community-based hybrid bottom-up modelling approach using urban building energy modelling (UBEM) techniques to analyze the effectiveness of the community-wide implementation of energy conservation guidelines.

Findings

In this study, the UBEM is developed and validated for the 14-building residential community in Mumbai, India, adopting the framework. Employing Energy Conservation Building Code (ECBC) compliance on the UBEM shows an energy use reduction potential of up to 15%. The results also reveal that ECBC compliance is more advantageous considering the effects of climate change.

Originality/value

In developing countries where the availability of existing building stock information is minimal, the proposed study formulates a holistic framework for developing a detailed UBEM for the residential building stock from scratch. A unique method of assessing the actual cooling load of the developed UBEM is presented. A thorough sensitivity analysis approach to investigate the effect of cooling space fraction on the energy consumption of the building stock is presented, which would assist in choosing the appropriate retrofit strategies. The proposed study's outcomes can significantly transform the formulation and validation of appropriate energy policies.

Details

Smart and Sustainable Built Environment, vol. 13 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 31 July 2024

Aravindh Devandran, Felicita J. Davis and Michael Sammanasu Joseph

This study aims to determine and investigate the main causes of construction project delays. Construction projects are more intricate and associated with significant levels of…

1100

Abstract

Purpose

This study aims to determine and investigate the main causes of construction project delays. Construction projects are more intricate and associated with significant levels of risk owing to cost overruns. These overruns frequently lead to delays, incomplete work or other related challenges. Building delays are a prevalent problem in the building sector of developing nations. These delays prolong the duration of projects and result in increased costs and conflicts among stakeholders. A conceptual model consisting of the factors causing the delays in heating, ventilation and air conditioning (HVAC) projects was developed and tested in this study.

Design/methodology/approach

A comprehensive data collection process was undertaken. A meticulously designed survey was distributed to a diverse cohort of 294 participants, including contractors and sub-contractors from Chennai, Tamil Nadu. The data was collected using stratified sampling, ensuring a representative sample. The data was then analysed using ordinary least squares multiple regression.

Findings

The findings of this study have significant implications for the construction industry. They indicate that factors related to sales, clients, design, procurement, finance and labour all contribute to delays in HVAC projects. Understanding these factors can help stakeholders in the industry to better manage and mitigate project delays.

Originality/value

This study is unique because it is a perceptual study of stakeholders. It provides valuable information for analysing and assessing project performance by identifying the primary causes of HVAC project delays. To the best of the authors’ knowledge, the study conducted on HVAC projects is the first of its kind and hence makes a pivotal contribution to the literature on construction projects. Additionally, the study will assist policymakers and consultants in taking necessary steps to minimize delays.

Details

Vilakshan - XIMB Journal of Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0973-1954

Keywords

Article
Publication date: 21 May 2024

Fatih Selimefendigil and Hakan F. Oztop

Multiple encapsulated phase change materials (PCMs) are used in a wide range of applications, including convective drying, electronic cooling, waste heat recovery and air…

Abstract

Purpose

Multiple encapsulated phase change materials (PCMs) are used in a wide range of applications, including convective drying, electronic cooling, waste heat recovery and air conditioning. Therefore, it is important to understand the performance of multiple PCMs in channels with flow separation and develop methods to increase their effectiveness. The aim of the study is to analyze the phase transition dynamics of multiple encapsulated PCMs mounted in a U-shaped tube under inclined magnetic field by using ternary nanofluid.

Design/methodology/approach

The PCMs used in the upper horizontal channel, vertical channel and lower horizontal channel are denoted by M1, M2 and M3. Magnetic field is uniform and inclined while finite element method is used as the solution technique. Triple encapsulated-PCM system study is carried out taking into account different values of Reynolds number (Re, ranges from 300 to 1,000), Hartmann number (Ha ranges from 0 and 60), magnetic field inclination (between 0 and 90) and solid volume fraction of ternary nanofluid (between 0 and 0.03). The dynamic response of the liquid fraction is estimated for each PCM with varying Re, Ha and t using an artificial neural network.

Findings

It is observed that for PCMs M2 and M3, the influence of Re on the phase transition is more effective. For M2 and M3, entire transition time (t-F) lowers by approximately 47% and 47.5% when Re is increased to its maximum value, whereas it only falls by 10% for M1. The dynamic characteristics of the phase transition are impacted by imposing MGF and varying its strength and inclination. When Ha is raised from Ha = 0 to Ha = 50, the t-F for PCM-M2 (PCM-M3) falls (increases) by around 30% (29%). For PCMs M1, M2 and M3, the phase transition process accelerates by around 20%, 30% and 28% when the solid volume fraction is increased to its maximum value.

Originality/value

Outcomes of this research is useful for understanding the phase change behavior of multiple PCMs in separated flow and using various methods such as nano-enhanced magnetic field to improve their effectiveness. Research outputs are beneficial for initial design and optimization of using multiple PCMs in diverse energy system technologies, including solar power, waste heat recovery, air conditioning, thermal management and drying.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2022

Hafizah Mohd Latif, Emmanuel A. Essah and Sohrab Donyavi

The aim of the research presented in this paper is to provide information on the common problems of healthy homes in the context of architectural design deficiencies. Especially…

Abstract

Purpose

The aim of the research presented in this paper is to provide information on the common problems of healthy homes in the context of architectural design deficiencies. Especially because determining the status of a healthy house is particularly challenging if the design is poor.

Design/methodology/approach

Qualitative methods, i.e. interviews, site visits and graphic elicitation diagramming were used in two different stages of data collection. They were then analysed using thematic analysis.

Findings

The findings show that the architectural elements can have positive or negative effects on the health and safe environments. The quantity of doors and the use of transparent glass have largely contributed to the thermal transmission and increased indoor temperatures. The roof aluminium sheets and absence of vents inhibited indoor heat loss. This has led to discomfort and overuse of air-conditioning units, particularly during the COVID-19 pandemic where most households stayed/worked from home. The inappropriate height of the ceiling and roof made it challenging for maintenance purpose, reducing safety levels, which could result in physical injuries.

Originality/value

The concept of healthy homes is not new. Studies have been conducted in Western countries and in the field of healthcare. However, there is lack of study in built environment particularly in developing countries and inadequate inter-disciplinary and empirical research to connect the healthcare field. The pervasive and recurring design deficiencies in the construction industry remain a source of unhealthy homes, which must be addressed. Future investigations are necessary to expand the conclusions that can be drawn from this paper for health equity within the society and nation.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 May 2022

Gökçe Tomrukçu and Touraj Ashrafian

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental…

411

Abstract

Purpose

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental impacts. The article investigates how, conversely speaking, the residential buildings will be affected by climate change, and how to improve existing structures and support long-term decisions.

Design/methodology/approach

The climate dataset was created using the scenarios determined by the Intergovernmental Panel on Climate Change (IPCC), and this was used in the study. Different building envelope and Heating, Ventilating and Air Conditioning (HVAC) systems scenarios have been developed and simulated. Then, the best scenario was determined with comparative results, and recommendations were developed.

Findings

The findings reveal that future temperature-increase will significantly impact buildings' cooling and heating energy use. As the outdoor air temperatures increase due to climate change, the heating loads of the buildings decrease, and the cooling loads increase significantly. While the heating energy consumption of the house was calculated at 170.85 kWh/m2 in 2020, this value shall decrease significantly to 115.01 kWh/m2 in 2080. On the other hand, the cooling energy doubled between 2020 and 2080 and reached 106.95 kWh/m2 from 53.14 kWh/m2 measured in 2020.

Originality/value

Single-family houses constitute a significant proportion of the building stock. An in-depth analysis of such a building type is necessary to cope with the devastating consequences of climate change. The study developed and scrutinised energy performance improvement scenarios to define the climate change adaptation process' impact and proper procedure. The study is trying to create a strategy to increase the climate resistance capabilities of buildings and fill the gaps in this regard.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 15 August 2023

Zul-Atfi Ismail

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC…

Abstract

Purpose

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC) systems in the form of a modern delivery system called demand controlled ventilation (DCV). Demand controlled ventilation has the potential to solve the building ventilation's biggest problem of managing indoor air quality (IAQ) for controlling COVID-19 transmission in indoor environments. However, the improper evaluation and information management of infection prevention on dense crowd activities such as measurement errors and volatile organic compound (VOC) generation failure rates, is fragmented so the aim of this research is to integrate this and explore potentials with machine learning algorithms (MLAs).

Design/methodology/approach

The method used is a thorough systematic literature review (SLR) approach. The results of this research consist of a detailed description of the DCV system and digitalized construction process of its IAQ elements.

Findings

The discussion revealed that DCV has a potential for being further integrated by perceiving it as a MLAs and hereby enabling the management of IAQ level from the perspective of health risk function mechanism (i.e. VOC and CO2) for maintaining a comfortable thermal environment and save energy of public and private buildings (PPBs). The appropriate MLA can also be selected in different occupancy patterns for seasonal variations, ventilation behavior, building type and locations, as well as current indoor air pollution control strategies. Furthermore, the conceptual framework showed that MLA application such as algorithm design/Model Predictive Control (MPC) integration can alleviate the high spread limitation of COVID-19 in the indoor environment.

Originality/value

Finally, the research concludes that a large unexploited potential within integration and innovation is recognized in the DCV system and MLAs which can be improved to optimize level of IAQ from the perspective of health throughout the building sector DCV process systems. The requirements of CO2 based DCV along with VOC concentrations monitoring practice should be taken into consideration through further research and experience with adaption and implementation from the ventilation control initial stage of the DCV process.

Details

Open House International, vol. 49 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 26 August 2024

Masum Miah, S.M. Mahbubur Rahman, Subarna Biswas, Gábor Szabó-Szentgróti and Virág Walter

This study aims to examine the direct effects of Green Human Resource Management (GHRM) practices on employee green behavior (EGB) in the university setting in Bangladesh and to…

Abstract

Purpose

This study aims to examine the direct effects of Green Human Resource Management (GHRM) practices on employee green behavior (EGB) in the university setting in Bangladesh and to find the indirect effects of how GHRM promotes EGB through sequentially mediating employee environmental knowledge management (EEKM) (environmental knowledge and knowledge sharing) and green self-efficacy (GSE).

Design/methodology/approach

For the empirical study, the researcher uses partial least squares structural equation modeling to test the proposed conceptual model built on existing literature for greening workplaces in the university in Bangladesh. The study has collected data from 288 Bangladeshi university employees using convenient sampling.

Findings

The findings that GHRM practices positively and significantly promote EGB, which captures the employee's tendencies to exercise green behavior in daily routine activities such as turning off lights, air conditioning, computers and equipment after working hours, printing on both sides, recycling (reducing, repair, reuse), disseminating good green ideas, concepts, digital skills and knowledge to peers and champion green initiatives at work. Moreover, the findings also revealed the sequential mediation of EEKM (environmental knowledge and knowledge sharing) and GSE of employees between the link GHRM and EGB. At last, the findings suggested that HR managers can implement the GHRM practices to promote green behaviors among the academic and non-academic staff of the university.

Originality/value

This study contributes to the field by extending knowledge of Social Cognition Theory and Social Learning Theory for greening workplaces in Bangladesh, particularly universities. Specifically, this empirical study is unique to the best of our knowledge and highlights the role of EEKM and GSE as mediation between GHRM and EGB association.

Details

International Journal of Organizational Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1934-8835

Keywords

1 – 10 of 302