Search results

1 – 10 of 142
Open Access
Article
Publication date: 30 August 2023

Sumit Gupta, Deepika Joshi, Sandeep Jagtap, Hana Trollman, Yousef Haddad, Yagmur Atescan Yuksek, Konstantinos Salonitis, Rakesh Raut and Balkrishna Narkhede

The paper proposes a framework for the successful deployment of Industry 4.0 (I4.0) principles in the aerospace industry, based on identified success factors. The paper challenges…

1210

Abstract

Purpose

The paper proposes a framework for the successful deployment of Industry 4.0 (I4.0) principles in the aerospace industry, based on identified success factors. The paper challenges the perception of I4.0 being aligned with de-skilling and personnel reduction and instead promotes a route to successful deployment centred on upskilling and retaining personnel for future role requirements.

Design/methodology/approach

The research methodology involved a literature review and industrial data collection via questionnaires to develop and validate the framework. The questionnaire was sent to a purposive sample of 50 respondents working in operations, and a response rate of 90% was achieved. Content analysis was used to identify patterns, themes, or biases, and the data were tabulated based on specific common attributes. The proposed framework consists of a series of gates and criteria that must be met before progressing to the next gate.

Findings

The proposed framework provides a feedback mechanism to review minimum standards for successful deployment, aligned with new developments in capability and technology, and ensures quality assessment at each gate. The paper highlights the potential benefits of I4.0 implementation in the aerospace industry, including reducing operational costs and improving competitiveness by eliminating variation in manufacturing processes. The identified success factors were used to define the framework, and the identified failure points were used to form mitigation actions or controls for inclusion in the framework.

Originality/value

The paper provides a framework for the successful deployment of I4.0 principles in the aerospace industry, based on identified success factors. The framework challenges the perception of I4.0 as being aligned with de-skilling and personnel reduction and instead promotes a route to successful deployment centred on upskilling and retaining personnel for future role requirements. The framework can be used as a guideline for organizations to deploy I4.0 principles successfully and improve competitiveness.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 4
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 25 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero and Christopher Sheaf

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost…

Abstract

Purpose

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles.

Design/methodology/approach

The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively.

Findings

Ratios of low- and high-fidelity training samples to degrees of freedom of nLF/nDOFs = 50 and nHF/nDOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage.

Originality/value

The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 April 2024

Isiaka Oluwole Oladele, Omoye Oseyomon Odemilin, Samson Oluwagbenga Adelani, Anuoluwapo Samuel Samuel Taiwo and Olajesu Favor Olanrewaju

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid…

Abstract

Purpose

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid biocomposites. This is part of responsible production and sustainability techniques for sustainable development goals. This study aims to broaden animal and plant fiber utilization in the sustainable production of epoxy resins for engineering applications.

Design/methodology/approach

This research used two reinforcing materials [chicken feather fiber (CFF) and bamboo particles (BP)] to reinforce epoxy resin. The BPs were kept constant at 6 Wt.%, while the CFF was varied within 3–15 Wt.% in the composites to make CFF-BP polymer-reinforced composite (CFF-BP PRC). The mechanical experiment showed a 21% reduction in densities, making the CFF-BP PRC an excellent choice for lightweight applications.

Findings

It was discovered that fabricated composites with 10 mm CFF length had improved properties compared with the 15 mm CFF length and pristine samples, which confirmed that short fibers are better at enhancing randomly dispersed fibers in the epoxy matrix. However, the ballistic properties of both samples matched. There is a 40% increase in tensile strength and a 54% increase in flexural strength of the CFF-BP PRC compared to the pristine sample.

Originality/value

According to the literature review, to the best of the authors’ knowledge, this is a novel study of chicken fiber and bamboo particles in reinforcing epoxy composite.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Executive summary
Publication date: 9 September 2024

UNITED STATES: Starliner returns amid uncertain future

Details

DOI: 10.1108/OXAN-ES289503

ISSN: 2633-304X

Keywords

Geographic
Topical
Executive summary
Publication date: 30 August 2024

TURKEY: Security interests may dictate key road link

Executive summary
Publication date: 22 July 2024

TAIWAN: Taipei will embrace asymmetric warfare

Details

DOI: 10.1108/OXAN-ES288463

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 11 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero, Josep Hueso-Rebassa and Christopher Sheaf

The decrease in specific thrust achieved by Ultra-High Bypass Ratio (UHBPR) aero-engines allows for a reduction in specific fuel consumption. However, the typical associated…

Abstract

Purpose

The decrease in specific thrust achieved by Ultra-High Bypass Ratio (UHBPR) aero-engines allows for a reduction in specific fuel consumption. However, the typical associated larger fan size might increase the nacelle drag, weight and the detrimental interference effects with the airframe. Consequently, the benefits from the new UHBPR aero-engine cycle may be eroded. This paper aims to evaluate the potential improvement in the aerodynamic performance of compact nacelles for installed aero-engine configuration.

Design/methodology/approach

Drooped and scarfed non-axisymmetric compact and conventional nacelle designs were down selected from a multi-point CFD-based optimisation. These were computationally assessed at a set of installation positions on a contemporary wide-body, twin-engine transonic aircraft. Both cruise and off-design conditions were evaluated. A thrust and drag accounting method was applied to evaluate different aircraft, powerplant and nacelle performance metrics.

Findings

The aircraft with the compact nacelle configuration installed at a typical installation position provided a reduction in aircraft cruise fuel consumption of 0.44% relative to the conventional architecture. However, at the same installation position, the compact design exhibits a large flow separation at windmilling conditions that is translated into an overall aircraft drag penalty of approximately 5.6% of the standard cruise net thrust. Additionally, the interference effects of a compact nacelle are more sensitive to deviations in mass flow capture ratio (MFCR) from the nominal windmilling diversion condition.

Originality/value

This work provides a comprehensive analysis of not only the performance but also the aerodynamics at an aircraft level of compact nacelles compared to conventional configurations for a range of installations positions at cruise. Additionally, the engine-airframe integration aerodynamics is assessed at an off-design windmilling condition which constitutes a key novelty of this paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Technological Sustainability, vol. 3 no. 3
Type: Research Article
ISSN: 2754-1312

Expert briefing
Publication date: 4 September 2024

It provides access to the North Atlantic and beyond, as well as the strategically important Arctic Ocean and the Northern Sea Route. The fleet plays a key role in projecting…

Article
Publication date: 2 April 2024

Amit Vishwakarma, Deepti Mehrotra, Ritu Agrahari, Manjeet Kharub, Sumit Gupta and Sandeep Jagtap

The apparel and textile sector poses a significant environmental challenge due to its substantial contribution to pollution in the form of air, water and soil pollution. To combat…

Abstract

Purpose

The apparel and textile sector poses a significant environmental challenge due to its substantial contribution to pollution in the form of air, water and soil pollution. To combat these issues, the adoption of sustainable practices is essential. This study aims to identify and analyse the barriers that hinder the progress of sustainability in the apparel and textile industry. By consulting experts in the field, critical barriers were identified and given special attention.

Design/methodology/approach

To achieve the research objective, an integrated approach involving Interpretive Structural Modelling (ISM) and fuzzy MICMAC decision-making techniques was employed. The results were further validated through the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method.

Findings

The findings highlight that barrier related to clothing disposal, inadequate adaptation to modern technology, challenges affecting sector efficiency and issues related to fashion design are crucial in influencing the remaining six barriers. Based on the outcomes of the DEMATEL method, a comprehensive cause-and-effect diagram was constructed to gain a deeper understanding of these challenges.

Practical implications

This research provides valuable insights for policymakers and stakeholders in the apparel and textile industry. It offers a strategic framework to address and overcome sustainability barriers, promoting the development of a more environmentally responsible and resilient sector.

Originality/value

The purpose of this research is to conduct an in-depth investigation of the barriers apparel and textile sectors. It is feasible that both the management team and the medical experts who provide direct patient care could benefit from this research.

Details

Journal of Advances in Management Research, vol. 21 no. 3
Type: Research Article
ISSN: 0972-7981

Keywords

1 – 10 of 142