Search results

1 – 10 of over 89000
Article
Publication date: 2 January 2018

Abdennacer Ben Messaoud, Samia Talmoudi and Moufida Ksouri-Lahmari

The purpose of this paper is to propose a new method for computing validities in the multimodel approach.

Abstract

Purpose

The purpose of this paper is to propose a new method for computing validities in the multimodel approach.

Design/methodology/approach

The multimodel approach offers an interesting alternative and a powerful tool to bypass the difficulties to model, control and diagnose a nonlinear and complex system. Its idea is defined as the apprehension of a nonlinear behaviour of a system by a set of local models characterizing the system operation in different operating zones. In spite of the success of its application in different fields, many problems related to the synthesis of multimodel approach remain open. These include, in particular, the method of obtaining the contribution degrees, also called validities, of the base-models for the deduction of the multimodel output.

Findings

The presented method may lead to superior results in comparison with the residue approach commonly used in the calculation of validities. Numerical simulation results and an experimental validation on a semi-batch reactor clearly illustrated the effectiveness of the proposed method and proved its impact on the improvement of the performances of the multimodel approach. Moreover, the multimodel approach using the new validities’ computation method can lead to perfect modelling of the process.

Practical implications

The proposed method discussed in the paper has the potential to make the multimodel approach more efficient in the modelling of complex real systems.

Originality/value

A significant contribution of the paper is the formulation of a new constrained optimization problem that can be solved by using a powerful mathematical tool such as the active set method, allowing to estimate the validity indexes in the multimodel approach. The obtained optimal solution can lead to perfect modelling of nonlinear and complex real systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

Bernhard Kortschak and Bernhard Brandstätter

For the spatial reconstruction of a two phase flow, as it might occur in a pipe, the main problem has always been the blurring of the resulting images.

Abstract

Purpose

For the spatial reconstruction of a two phase flow, as it might occur in a pipe, the main problem has always been the blurring of the resulting images.

Design/methodology/approach

In this paper, we present a method where blurring is implicitly avoided by the use of level sets. The level set method describes the iteratively evolving interface between different materials. The underlying field problem is solved with the boundary element method formulated in the region, where the degrees of freedom are present and the finite element method in all other regions.

Findings

Finally reconstruction results of an electrical capacitance tomography sensor are presented to show the validity of the method.

Originality/value

Presents a method where blurring is avoided by the use of level sets.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Danguang Pan and Chenfeng Li

Extended from the classic Rayleigh damping model in structural dynamics, the Caughey damping model allows the damping ratios to be specified in multiple modes while satisfying the…

Abstract

Purpose

Extended from the classic Rayleigh damping model in structural dynamics, the Caughey damping model allows the damping ratios to be specified in multiple modes while satisfying the orthogonality conditions. Despite these desirable properties, Caughey damping suffers from a few major drawbacks: depending on the frequency distribution of the significant modes, it can be difficult to choose the reference frequencies that ensure reasonable values for all damping ratios corresponding to the significant modes; it cannot ensure all damping ratios are positive. This paper aims to present a constrained quadratic programming approach to address these issues.

Design/methodology/approach

The new method minimizes the error of the structural displacement peak based on the response spectrum theory, while all modal damping ratios are constrained to be greater than zero.

Findings

Several comprehensive examples are presented to demonstrate the accuracy and effectiveness of the proposed method, and comparisons with existing approaches are provided whenever possible.

Originality/value

The proposed method is highly efficient and allows the damping ratios to be conveniently specified for all significant modes, producing optimal damping coefficients in practical applications.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2017

Recep M. Gorguluarslan, Umesh N. Gandhi, Yuyang Song and Seung-Kyum Choi

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like…

1664

Abstract

Purpose

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process.

Design/methodology/approach

The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods.

Findings

The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods.

Practical implications

The proposed framework can be used effectively for optimizing complex lattice-based structures.

Originality/value

An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 July 2009

Gerald Steiner and Daniel Watzenig

The purpose of this paper is to investigate the achievable improvement in reconstruction accuracy in electrical tomography through the incorporation of physical bound constraints…

Abstract

Purpose

The purpose of this paper is to investigate the achievable improvement in reconstruction accuracy in electrical tomography through the incorporation of physical bound constraints as prior knowledge in the inverse problem solution.

Design/methodology/approach

The structure of the nonlinear least squares inverse problem formulation and the importance of prior knowledge are addressed. Several different methods for the incorporation of bound constraints are discussed. The methods are compared by means of reconstructions from simulated and measured data and the computational demands.

Findings

The inclusion of bound constraints on the material values in the inverse problem solution results in a considerable improvement of the reconstructions. The occurrence of artefacts and blurring can be reduced. Among the investigated constraint handling methods, the logarithmic parameter reconstruction approach can be implemented with minimal additional computational effort.

Research limitations/implications

The study is performed with discrete two‐phase material distributions as occurring in industrial problems. A further step would be the extension to multiple phases.

Originality/value

The logarithmic transform method is a novel approach for the incorporation of bound constraints in tomography. It outperforms other constraint handling approaches and may be of interest for electrical tomography systems in various applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 November 2021

Mahmood Khaksar-e Oshagh, Mostafa Abbaszadeh, Esmail Babolian and Hossein Pourbashash

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Abstract

Purpose

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Design/methodology/approach

The main aim of this paper is to present an adaptive collocation approach based on the interpolating wavelets to solve an OCP for finding optimal heat source, in a two-dimensional domain. This problem arises when the domain is heated by microwaves or by electromagnetic induction.

Findings

This paper shows that combination of interpolating wavelet basis and finite difference method makes an accurate structure to design adaptive algorithm for such problems which usually have non-smooth solution.

Originality/value

The proposed numerical technique is flexible for different OCP governed by a partial differential equation with box constraint over the control or the state function.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 28 March 2022

Yunfei Li, Shengbo Eben Li, Xingheng Jia, Shulin Zeng and Yu Wang

The purpose of this paper is to reduce the difficulty of model predictive control (MPC) deployment on FPGA so that researchers can make better use of FPGA technology for academic…

1328

Abstract

Purpose

The purpose of this paper is to reduce the difficulty of model predictive control (MPC) deployment on FPGA so that researchers can make better use of FPGA technology for academic research.

Design/methodology/approach

In this paper, the MPC algorithm is written into FPGA by combining hardware with software. Experiments have verified this method.

Findings

This paper implements a ZYNQ-based design method, which could significantly reduce the difficulty of development. The comparison with the CPU solution results proves that FPGA has a significant acceleration effect on the solution of MPC through the method.

Research limitations implications

Due to the limitation of practical conditions, this paper cannot carry out a hardware-in-the-loop experiment for the time being, instead of an open-loop experiment.

Originality value

This paper proposes a new design method to deploy the MPC algorithm to the FPGA, reducing the development difficulty of the algorithm implementation on FPGA. It greatly facilitates researchers in the field of autonomous driving to carry out FPGA algorithm hardware acceleration research.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 17 April 2020

Wei Liu, Zhengdong Huang and Yunhua Liu

The purpose of this study is to propose an isogeometric analysis (IGA) approach for solving the Reynolds equation in textured piston ring cylinder liner (PRCL) contacts.

Abstract

Purpose

The purpose of this study is to propose an isogeometric analysis (IGA) approach for solving the Reynolds equation in textured piston ring cylinder liner (PRCL) contacts.

Design/methodology/approach

The texture region is accurately and conveniently expressed by non-uniform rational B-splines (NURBS) besides hydrodynamic pressure and the oil film density ratio is represented in this mathematical form. A quadratic programming method combined with a Lagrange multiplier method is developed to address the cavitation issue.

Findings

The comparison with the results solved by an analytical method has verified the effectiveness of the proposed approach. In the study of the PRCL contact with two-dimensional circular dimple textures, the solution of the IGA approach shows high smoothness and accuracy, and it well satisfies the complementarity condition in the case of cavitation presence.

Originality/value

This paper proposes an IGA approach for solving the Reynolds equation in textured PRCL contacts. Its novelty is reflected in three aspects. First, NURBS functions are simultaneously used to express the solution domain, texture shape, hydrodynamic pressure and oil density ratio. Second, the streamline upwind/Petrov–Galerkin method is adopted to create a weak form for the Reynolds equation that takes the oil density ratio as a first-order unknown variable. Third, a quadratic programming approach is developed to impose the complementarity conditions between the hydrodynamic pressure and the oil density ratio.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 October 2021

Liang Su, Zhenpo Wang and Chao Chen

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving…

Abstract

Purpose

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs.

Design/methodology/approach

The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm.

Findings

The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively.

Originality/value

In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.

1 – 10 of over 89000