Search results

1 – 10 of 773
Article
Publication date: 1 March 2005

J.T. Hong, Y.K. Lee, S.R. Lee and D.Y. Yang

In the finite element analysis of a hot forging process with hexahedral elements, flash region is difficult to analyze because of the thin shape. In this paper, a hot forging…

Abstract

Purpose

In the finite element analysis of a hot forging process with hexahedral elements, flash region is difficult to analyze because of the thin shape. In this paper, a hot forging process is effectively analyzed by constructing a locally fine mesh in the flash region.

Design/methodology/approach

When remeshing is decided by an error estimation and flash is generated, the boundary patch of the mesh is constructed and expanded in the normal direction of the flash region. After hexahedral mesh is constructed in the expanded patch with master grid approach, the boundary patch is compressed to the original shape and the nodes in the boundary are moved to the relative position of the boundary patch. Then, a locally fine mesh is constructed in the flash region. The quality of mesh on the boundary is again improved by adding surface element layer. Therefore, the hot forging process can be effectively analyzed by constructing the adaptive hexahedral mesh in the flash region.

Findings

The results show that the locally fine mesh can be constructed in the hexahedral mesh generation procedure by constructing mesh in the expanded patch and compressing the mesh according to the original boundary patch without affecting the compatibility of element. Then, it is applied to the analysis of a hot forging process and it has been shown that the analysis result of the proposed technique can save the analysis time remarkably relative to that of the fine mesh, while maintaining the analysis accuracy of the fine mesh.

Originality/value

In the finite element analysis of a hot forging process, the flash region is very difficult to analyze because it is difficult to construct locally fine mesh with hexahedral elements. A new adaptive mesh generation technique using hexahedral elements is suggested to overcome such difficulty and applied to the analysis of a hot forging process.

Details

Engineering Computations, vol. 22 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1992

N.A. Golias and T.D. Tsiboukis

Two a‐posteriori error estimators are presented for adaptive mesh generation in eddy current finite element computation : the discontinuity of the magnetic flux density on the…

Abstract

Two a‐posteriori error estimators are presented for adaptive mesh generation in eddy current finite element computation : the discontinuity of the magnetic flux density on the interface between neighboring elements and the energy perturbation between 1st and 2nd order finite element meshes. Validation of the results is being accomplished by application of the adaptive refinement in the case of a T‐shaped slot embedded conductor, a problem several times approached in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 17 November 2021

Mahmood Khaksar-e Oshagh, Mostafa Abbaszadeh, Esmail Babolian and Hossein Pourbashash

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Abstract

Purpose

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Design/methodology/approach

The main aim of this paper is to present an adaptive collocation approach based on the interpolating wavelets to solve an OCP for finding optimal heat source, in a two-dimensional domain. This problem arises when the domain is heated by microwaves or by electromagnetic induction.

Findings

This paper shows that combination of interpolating wavelet basis and finite difference method makes an accurate structure to design adaptive algorithm for such problems which usually have non-smooth solution.

Originality/value

The proposed numerical technique is flexible for different OCP governed by a partial differential equation with box constraint over the control or the state function.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2003

Qimi Jiang, Chun‐Hsien Chen and Li Pheng Khoo

Research effort to integrate an analysis module of inductive field into an eddy current NDT system to realise a hybrid technique, which is capable of automatically analysing the…

Abstract

Research effort to integrate an analysis module of inductive field into an eddy current NDT system to realise a hybrid technique, which is capable of automatically analysing the inductive field so as to set up the optimum parameters for the system, has not been well addressed. This paper describes the work that leads to the realization of such a hybrid technique. First, two finite element models are described. Next, an analytical algorithm based on these models is proposed. By integrating the algorithm into an eddy current NDT system, a smart hybrid technique can be realized. This is beneficial in setting up relevant parameters such as the working frequencies and the detection distance. Thus, the test precision can be improved. Taking a cylindrical inductive sensor as an example, some calculation results are provided to illustrate the analysis of the inductive field produced in an eddy current NDT system.

Details

Engineering Computations, vol. 20 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing

1898

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1207

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1668

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

José I.V. Sena, Cedric Lequesne, L Duchene, Anne-Marie Habraken, Robertt A.F. Valente and Ricardo J Alves de Sousa

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between…

Abstract

Purpose

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced.

Design/methodology/approach

SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years.

Findings

In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results.

Originality/value

It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2020

Jéderson da Silva, Jucélio Tomás Pereira and Diego Amadeu F. Torres

The purpose of this paper is to propose a new scheme for obtaining acceptable solutions for problems of continuum topology optimization of structures, regarding the distribution…

Abstract

Purpose

The purpose of this paper is to propose a new scheme for obtaining acceptable solutions for problems of continuum topology optimization of structures, regarding the distribution and limitation of discretization errors by considering h-adaptivity.

Design/methodology/approach

The new scheme encompasses, simultaneously, the solution of the optimization problem considering a solid isotropic microstructure with penalization (SIMP) and the application of the h-adaptive finite element method. An analysis of discretization errors is carried out using an a posteriori error estimator based on both the recovery and the abrupt variation of material properties. The estimate of new element sizes is computed by a new h-adaptive technique named “Isotropic Error Density Recovery”, which is based on the construction of the strain energy error density function together with the analytical solution of an optimization problem at the element level.

Findings

Two-dimensional numerical examples, regarding minimization of the structure compliance and constraint over the material volume, demonstrate the capacity of the methodology in controlling and equidistributing discretization errors, as well as obtaining a great definition of the void–material interface, thanks to the h-adaptivity, when compared with results obtained by other methods based on microstructure.

Originality/value

This paper presents a new technique to design a mesh made with isotropic triangular finite elements. Furthermore, this technique is applied to continuum topology optimization problems using a new iterative scheme to obtain solutions with controlled discretization errors, measured in terms of the energy norm, and a great resolution of the material boundary. Regarding the computational cost in terms of degrees of freedom, the present scheme provides approximations with considerable less error if compared to the optimization process on fixed meshes.

1 – 10 of 773