Search results

1 – 10 of 885
Article
Publication date: 30 April 2024

Supen Kumar Sah and Anup Ghosh

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property…

Abstract

Purpose

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property gradation along length and thickness direction under thermo-mechanical loading using inverse trigonometric shear deformation theory (ITSDT). FGM sandwich plate with a ceramic core and continuous variation of material properties has been modelled using Voigt’s micro-mechanical model following the power law distribution method. The impact of bi-directional gradation of material properties over the bending response of FGM plate under thermo-mechanical loading has been investigated in this work.

Design/methodology/approach

In this study, gradation of material properties for FGM plates is considered along length and thickness directions using Voigt’s micromechanical model following the power law distribution method. This type of FGM is called bi-directional FGMs (BDFGM). Mechanical and thermal properties of BDFGM sandwich plates are considered temperature-dependent in the present study. ITSDT is a non-polynomial shear deformation theory which requires a smaller number of field variables for modelling of displacement function in comparison to poly-nominal shear deformation theories which lead to a reduction in the complexity of the problem. In the present study, ITSDT has been utilized to obtain the governing equations for thermo-mechanical bending of simply supported uni-directional FGM (UDFGM) and BDFGM sandwich plates. Analytical solution for bending analysis of rectangular UDFGM and BDFGM sandwich plates has been carried out using Hamilton’s principle.

Findings

The bending response of the BDFGM sandwich plate under thermo-mechanical loading has been analysed and discussed. The present study shows that centre deflection, normal stress and shear stress are significantly influenced by temperature-dependent material properties, bi-directional gradation exponents along length and thickness directions, geometrical parameters, sandwich plate layer thickness, etc. The present investigation also reveals that bi-directional FGM sandwich plates can be designed to obtain thermo-mechanical bending response with an appropriate selection of gradation exponents along length and thickness direction. Non-dimensional centre deflection of BDFGM sandwich plates decreases with increasing gradation exponents in length and thickness directions. However, the non-dimensional centre deflection of BDFGM sandwich plates increases with increasing temperature differences.

Originality/value

For the first time, the FGM sandwich plate with the bi-directional gradation of material properties has been considered to investigate the bending response under thermo-mechanical loading. In the literature, various polynomial shear deformation theories like first-order shear deformation theory (FSDT), third-order shear deformation theory (TSDT) and higher-order shear deformation theory (HSDT) have been utilized to obtain the governing equation for bending response under thermo-mechanical loading; however, non-polynomial shear deformation theory like ITSDT has been used for the first time to obtain the governing equation to investigate the bending response of BDFGM. The impact of bi-directional gradation and temperature-dependent material properties over centre deflection, normal stress and shear stress has been analysed and discussed.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 29 January 2024

Mujeeb Saif Mohsen Al-Absy

Businesses are now under more pressure from society, legislatures, and other stakeholders to act responsibly since there is a deeper understanding of how businesses affect society…

Abstract

Businesses are now under more pressure from society, legislatures, and other stakeholders to act responsibly since there is a deeper understanding of how businesses affect society globally. Whether a company environmental policy is actively pursued or passively approved, boards are ultimately in charge of it. Hence, the aim of the study is to investigate the influence of the board of directors’ characteristics, namely board size, meetings, independence, gender diversity, and qualification, on environmental disclosure. The study covers all listed manufacturing companies in Saudi Arabia and Bahrain for the years 2018–2022. The study expects that the board of directors’ characteristics should have a significant impact on enhancing the environmental disclosure. The finding of the study will add a vital contribution to the literature as it is the first study to be conducted in a developing country, such as Bahrain, where no study has yet been conducted there. The finding will help different parties, for example, policy makers, regulators, and shareholders as well as managers on the effect of the board of directors on the level of high quality in environmental disclosure that will build a good reputation for companies.

Details

Digital Technology and Changing Roles in Managerial and Financial Accounting: Theoretical Knowledge and Practical Application
Type: Book
ISBN: 978-1-80455-973-4

Keywords

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Book part
Publication date: 17 May 2024

Asim K. Karmakar, Sebak K. Jana and Priyanthi Bagchi

Financial instability and economic crises are closely intertwined. There is no universally accepted definition. The term ‘stability’ or ‘instability’ refers to the behaviour of…

Abstract

Financial instability and economic crises are closely intertwined. There is no universally accepted definition. The term ‘stability’ or ‘instability’ refers to the behaviour of the system rather than to individual institutions. However, one cannot rule out that failure of a single financial institution can trigger significant financial turmoil as was happened in 2007–08 global financial crises. Like unstable equilibrium, instability implies inability to correct itself on its own. Instability, if it persists, turns into a crisis. In the above backdrop, the objective of this chapter is to investigate the financial crises and instability viewed both from economic and international political economy perspectives with a tale of four generation crisis models as it has been evolved over time to explain the phenomenon of different types of crises.

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Keywords

Article
Publication date: 23 August 2023

Sakthivel Murugan R. and Vinodh S.

This paper aims to propose a new framework on prioritizing and deployment of design for additive manufacturing (DfAM) strategies to an industrial component using Fuzzy TOPSIS…

Abstract

Purpose

This paper aims to propose a new framework on prioritizing and deployment of design for additive manufacturing (DfAM) strategies to an industrial component using Fuzzy TOPSIS multiple criteria decision-making (MCDM) techniques. The proposed framework is then applied to an automotive component, and the results are discussed and compared with existing design.

Design/methodology/approach

Eight DfAM design alternatives associated with eight design criteria have been identified for framing new DfAM strategies. The prioritization order of the design alternatives is identified by Fuzzy TOPSIS MCDM technique through its closeness coefficient. Based on Fuzzy TOPSIS MCDM output, each of the design alternatives is applied sequentially to an automobile component as a case study. Redesign is carried out at each stage of DfAM implementation without affecting the functionality.

Findings

On successful implementation of proposed framework to an automotive component, the mass is reduced by 43.84%, from 0.429 kg to 0.241 kg. The redesign is validated by finite element analysis, where von Mises stress is less than the yield stress of the material.

Practical implications

The proposed DfAM framework and strategies will be useful to designers, R&D engineers, industrial practitioners, experts and consultants for implementing DfAM strategies on any industrial component without impacting its functionality.

Originality/value

To the best of the authors’ knowledge, the idea of prioritization and implementation of DfAM strategies to an automotive component is the original contribution.

Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 May 2023

Emma Harriet Wood and Maarit Kinnunen

To explore the value in reminiscing about past festivals as a potential way of improving wellbeing in socially isolated times.

Abstract

Purpose

To explore the value in reminiscing about past festivals as a potential way of improving wellbeing in socially isolated times.

Design/methodology/approach

The paper uses previous research on reminiscence, nostalgia and wellbeing to underpin the analysis of self-recorded memory narratives. These were gathered from 13 pairs of festivalgoers during Covid-19 restrictions and included gathering their individual memories and their reminiscences together. The participant pairs were a mix of friends, family and couples who had visited festivals in the UK, Finland and Denmark.

Findings

Four key areas that emerged through the analysis were the emotions of nostalgia and anticipation, and the processes of reliving emotions and bonding through memories.

Research limitations/implications

Future studies could take a longitudinal approach to see how memory sharing evolves and the impact of this on wellbeing. The authors also recommend undertaking similar studies in other cultural settings.

Practical implications

This study findings have implications for both post-festival marketing and for the further development of reminiscence therapy interventions.

Originality/value

The method provides a window into memory sharing that has been little used in previous studies. The narratives confirm the value in sharing memories and the positive impact this has on wellbeing. They also illustrate that this happens through positive forms of nostalgia that centre on gratitude and lead to hope and optimism. Anticipation, not emphasised in other studies, was also found to be important in wellbeing and was triggered through looking back at happier times.

Details

International Journal of Event and Festival Management, vol. 15 no. 1
Type: Research Article
ISSN: 1758-2954

Keywords

1 – 10 of 885