Search results

1 – 5 of 5
Article
Publication date: 22 May 2009

Hosni M. Ezuber

The purpose of this paper is to evaluate the effect of seawater temperature on the corrosion behaviour of 90‐10 cupronickel alloys. Also, to investigate the effect of thiosulphate…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of seawater temperature on the corrosion behaviour of 90‐10 cupronickel alloys. Also, to investigate the effect of thiosulphate additions (one of the major sulphide oxidation products in seawater) on the alloy corrosion rate in seawater.

Design/methodology/approach

Potentiodynamic polarization measurement (DC) was used to estimate the corrosion rate of the cupronickel alloy in seawater with and without thiosulphate species (50‐650 ppm).

Findings

It was observed that the cupronickel alloy suffered accelerated corrosion as the seawater temperature was raised from 25 to 50 or 80°C. The increase in the corrosion rate was found to correspond well with the negative shift in the free corrosion potential. Thiosulphate addition was found to depend on the test temperature. At 25°C, thiosulphate activated the alloy dissolution rate and the higher were the thiosulphate concentrations, the higher was the corrosion rate. At 50 or 80°C, however, thiosulphate promoted the dissolution rate at early stages, but seemed to interfere with the surface film formation later on, producing a black film that effectively decreased the alloy corrosion rate. At higher potentials, however, the film became non‐protective, leading to accelerated corrosion once again.

Originality/value

This paper explains the corrosion behaviour of 90‐10 cupronickel alloys in seawater as a function of test temperature and thiosulphate additions.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 June 2012

Hosni M. Zubeir

The purpose of this paper is to investigate the effect of iron content (2% and up to 6% Fe) on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl at different temperatures…

Abstract

Purpose

The purpose of this paper is to investigate the effect of iron content (2% and up to 6% Fe) on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl at different temperatures (23, 50 and 80°C) under stagnant conditions and fluid flow (with an agitation speed of 350 and 900 RPM). The laboratory study was conducted following a failure of high iron content (up to 6%) 90Cu‐10Ni heat exchanger tubes in a desalination plant.

Design/methodology/approach

Potentiodynamic polarization measurement (DC) was used to estimate the corrosion rate of the 90Cu‐10Ni alloys in NaCl solutions under stagnant and fluid flow conditions.

Findings

It was found that the higher iron content cupronickel material suffered higher corrosion rates in all tests. The intensity of the corrosion attack of both materials was increased significantly with increasing experimental temperature or flow velocity. The results support a previous prediction that the presence of excess iron (well above 2%) has played a major role in corrosion failure of 90Cu‐10Ni heat exchanger tubing material in seawater.

Originality/value

This paper explains the role of iron content on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl under stagnant and fluid flow conditions.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 April 2024

Yongjing Wang and Yingwei Liu

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be…

Abstract

Purpose

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be directly measured, this study aims to propose an improved particle swarm optimization (PSO) algorithm.

Design/methodology/approach

In traditional PSO algorithms, each particle’s historical optimal solution is compared with the global optimal solution in each iteration step, and the optimal solution is replaced with a certain probability to achieve the goal of jumping out of the local optimum. However, this will to some extent undermine the (true) optimal solution. In view of this, this study has improved the traditional algorithm: at each iteration of each particle, the historical optimal solution is not compared with the global optimal solution. Instead, after all particles have iterated, the optimal solution is selected and compared with the global optimal solution and then the optimal solution is replaced with a certain probability. This to some extent protects the global optimal solution.

Findings

The polarization curve plotted by this equation is in good agreement with the experimental values, which demonstrates the reliability of this algorithm and provides a new method for measuring electrochemical parameters.

Originality/value

This study has improved the traditional method, which has high accuracy and can provide great support for corrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 February 2014

Yanan Luo, Qizheng Li and Shizhe Song

The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to…

Abstract

Purpose

The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to 0.15 percent), to analyze the effects of the flow velocity and sediment content on the erosion-corrosion process.

Design/methodology/approach

A simulated erosion-corrosion test system was set up. Weight loss determinations and electrochemical measurements (such as potentiostat square wave (PSW), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests) were used to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in stagnant and flowing seawater with different sediment contents.

Findings

Under the test conditions, ZHMn55-3-1 copper alloys had good corrosion resistance to stagnant clear seawater, while increasing the flow velocity and sediment content reduced the corrosion resistance of the material. The difference in the erosion-corrosion mechanism between flow velocity and sediment content was that the former affected both the cathode process and the anode process of electrochemical corrosion, while the latter essentially affected only the anode process.

Originality/value

This paper explains the effects of flow velocity and sediment content on the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in flowing seawater.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 April 2021

Yanbo Zhu, Xiaohong Chen, Ping Liu, Shaoli Fu, Honglei Zhou and Jiayan Wu

This study aims to investigate the effect of changes in iron content in 70/30 copper–nickel alloy on the corrosion process.

Abstract

Purpose

This study aims to investigate the effect of changes in iron content in 70/30 copper–nickel alloy on the corrosion process.

Design/methodology/approach

70Copper–30Nickel-xFe-1Mn (x = 0.4,0.6,0.8,1.0 Wt.%) alloy were prepared by the high frequency induction melting furnace. The scanning electron microscope, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy were used to analyze the morphology and component of the corrosion product film.

Findings

The results show that the corrosion resistance of 70/30 copper–nickel alloy added with 1.0%Fe is the best, and the film is divided into inner dense Cu2O composite film and outer hydration loose layer; XRD showed that after adding 1.0% Fe, the content of Cu2(OH)3Cl in the corrosion product film was significantly reduced, while the content of Cu2O remained unchanged; XPS showed that nickel accumulates in the inner layer of corrosion product film; the stage growth mode of the film, the role of nickel in it and the enrichment mechanism of iron in the inner film were summarized and discussed.

Originality/value

The changes in the composition and structure of the corrosion product film caused by the iron content are revealed, and the mechanism of the difference in corrosion resistance is discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 5 of 5