Search results
1 – 10 of 582Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed
In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…
Abstract
Purpose
In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.
Design/methodology/approach
Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.
Findings
Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.
Originality/value
The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.
Details
Keywords
S. Hoseinzadeh, S.M. Taheri Otaghsara, M.H. Zakeri Khatir and P.S. Heyns
The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different…
Abstract
Purpose
The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different channel cross-sectional geometries (circular, hexagonal and triangular) with the pulsating flow are investigated. For this purpose, the alumina nanofluid was considered as a working fluid with different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent).
Design/methodology/approach
In this study, the pulsatile flow was investigated in a three-dimensional channel. Channel flow is laminar and turbulent.
Findings
The results show that the fluid temperature decreases by increasing the volume percentage of particles of Al2O3; this is because of the fact that the input energy through the wall boundary is a constant value and indicates that with increasing the volume percentage, the fluid can save more energy at a constant temperature. And by adding Al2O3 nanofluid, thermal performance improves in channels, but it should be considered that the use of nanofluid causes a pressure drop in the channel.
Originality/value
Alumina/water nanofluid with the pulsating flow was investigated and compared in three different cross-sectional channel geometries (circular, hexagonal and triangular). The effect of different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent) of Al2O3 nanofluid on temperature, velocity and pressure are studied.
Details
Keywords
Hsien-Hung Ting and Shuhn-Shyurng Hou
The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat…
Abstract
Purpose
The purpose of this paper is to numerically investigate the convective heat transfer of water-based CuO nanofluids flowing through a square cross-section duct under constant heat flux in the turbulent flow regime.
Design/methodology/approach
The numerical simulation is carried out at various Peclet numbers and particle concentrations (0.1, 0.2, 0.5, and 0.8 vol%). The finite volume formulation is used with the semi-implicit method for pressure-linked equations algorithm to solve the discretized equations derived from the partial nonlinear differential equations of the mathematical model.
Findings
The heat transfer coefficients and Nusselt numbers of CuO-water nanofluids increase with increases in the Peclet number as well as particle volume concentration. Also, enhancement of the heat transfer coefficient is much greater than that of the effective thermal conductivity at the same nanoparticle concentration.
Research limitations/implications
Simulation of nanofluids turbulent forced convection at very high Reynolds number is worth for further study.
Practical implications
The heat transfer rates through non-circular ducts are smaller than the circular tubes. Nevertheless, the pressure drop of the non-circular duct is less than that of the circular tube. This study clearly presents that the nanoparticles suspended in water enhance the convective heat transfer coefficient, despite low volume fraction between 0.1 and 0.8 percent. Adding nanoparticles to conventional fluids may enhance heat transfer performance through the non-circular ducts, leading to extensive practical applications in industries for the non-circular ducts.
Originality/value
Few papers have numerically studied convective heat transfer properties of nanofluids through non-circular ducts. The present numerical results show a good agreement with the published experimental data.
Details
Keywords
Zahra Sarbazi and Faramarz Hormozi
This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin…
Abstract
Purpose
This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin cross-sections. The effect of the fin cross-section including semi-circular, rectangular and quadrant in two directions of flat and curved, and channel substrate materials of steel, aluminum, copper and titanium were examined. Finally, the analysis of thermal and frictional entropy generation in different channels is performed.
Design/methodology/approach
According to the numerical results, the highest heat transfer coefficients belong to the rectangular, quadrant 2, quadrant 1 and semi-circular fins compared to the channel without fin is 38.65%, 29.94%, 27.45% and 17.1%, respectively. Also, the highest performance evaluation criteria belong to the rectangular and quadrant 2 fins, which have 1.35 and 1.29, respectively. Based on the thermal conductivity of the substrate material, the best material is copper. According to the results of entropy analysis, the reduction of thermal irreversibility of the channel with rectangular, quadrant 1, quadrant 2 and semi-circular compared to non-finned channel is equal to 72%, 57%, 63% and 48%, respectively.
Findings
The rectangular and quadrant 2 fins are the best fins and the copper substrate material is the best material to reduce the entropy generation.
Originality/value
The silicon oxide/water nanofluid flow in the heat sink miniature channel with various fin shapes and the curvature angle against the fluid flow was simulated to increase the heat transfer performance. The whole test section is simulated in three-dimensional. Different channel materials have been investigated to find the best channel substrate material.
Details
Keywords
Marjan Goodarzi, Iskander Tlili, Zhe Tian and Mohammad Reza Safaei
This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and…
Abstract
Purpose
This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and square).
Design/methodology/approach
The nanofluid is graphene nanoplatelets-silver/water, and the heat transfer in laminar flow was investigated. The range of coolant Reynolds number in this investigation was 200 ≤ Re ≤ 1000, and the concentrations of nano-sheets were from 0 to 0.1 vol. %.
Findings
Results show that higher temperature leads to smaller Nusselt number, pressure drop and pumping power, and increasing solid nano-sheet volume fraction results in an expected increase in heat transfer. However, the influence of temperature on the friction factor is insignificant. In addition, by increasing the Reynolds number, the values of pressure drop, pumping power and Nusselt number augments, but friction factor diminishes.
Research limitations/implications
Data extracted from a recent experimental work were used to obtain thermo-physical properties of nanofluids.
Originality/value
The effects of temperature, microchannel cross-section shape, the volume concentration of nanoparticles and Reynolds number on thermal and hydraulics behavior of the nanofluid were investigated. Results are presented in terms of velocity, Nusselt number, pressure drop, friction loss and pumping power in various conditions. Validation of the model against previous papers showed satisfactory agreement.
Details
Keywords
This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.
Abstract
Purpose
This paper aims to address stagnation point flow of cross nanofluid in frames of hydromagnetics. Flow analysis subjected to expanding-contracting cylinder is studied.
Design/methodology/approach
Nonlinear problems are computed by using bvp4c procedure.
Findings
Radius of curvature and temperature-dependent heat sink-source significantly affects heat-mass transport mechanisms for cylindrical surface.
Originality/value
No such analysis has yet been reported.
Details
Keywords
Gülbanu Şenay, Metin Kaya, Engin Gedik and Muhammet Kayfeci
The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux…
Abstract
Purpose
The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux (500 × 103 W/m2).
Design/methodology/approach
In numerical computations, ANSYS Fluent code based on the finite volume method was used to solve governing equations by iteratively. Water, Al2O3-water and TiO2-water nanofluids were used for different flow velocities changing 1 m/s to 8 m/s (i.e. Reynolds number varying from 3,000 to 100,000).
Findings
The results were compared with results published previously in the literature and close agreement was observed especially considering Dittus and Boelter correlation for water. It was found that from the obtained results, increasing flow velocity and volume fractions of nanoparticles has caused to increase Nu number for all cases. Besides, variations of pressure drop, Darcy friction factor are presented graphically and discussed in detail. The results are consistent with a deviation of 1.3 to 15 per cent with the results of other researchers.
Originality/value
The effects of the Re numbers and volume fractions of nanoparticles (0.01 ≤ Φ ≤ 0.04) on the heat transfer and fluid flow characteristics such as average Nu number, pressure drop (ΔP) and Darcy friction factor (f) were investigated.
Details
Keywords
Natalia C. Roşca, Alin V. Roşca, Amin Jafarimoghaddam and Ioan Pop
The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous…
Abstract
Purpose
The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface.
Design/methodology/approach
Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters.
Findings
It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper.
Originality/value
The authors believe that all numerical results are new and original and have not been published before for the present problem.
Details
Keywords
Esmaeil Jalali and Arash Karimipour
In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by…
Abstract
Purpose
In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by injecting the lower wall. The upper wall of the microchannel is 303 K at temperature TH. On the lower wall of the microchannel, there are three holes for flow injection. Other parts of the wall are insulated. In this paper, the effect of parameters such as Reynolds number, slip coefficient and volume fraction of nanoparticles is investigated.
Design/methodology/approach
The boundary condition of the slip velocity is considered on the upper and lower walls of the microchannel. In this work, the flow of nanofluid in the microchannel is considered to be slow, permanent and Newtonian. In the present study, the effect of injection through the microchannel wall on the slip velocity is examined for the first time.
Findings
The results are also presented as velocity profiles and Nusselt number diagrams. It was found that the Nusselt number increases with increasing the amount of slip coefficient of velocity and the weight percentage of solid nanoparticles. The rate of this increase is higher in the high values of the Reynolds number.
Originality/value
A novel paper concerned the simulation of cross-flow injection effects on the slip velocity and temperature domain of a nanofluid flow inside a microchannel.
Details
Keywords
Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop
The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…
Abstract
Purpose
The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.
Design/methodology/approach
The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number (
Findings
The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.
Originality/value
This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.
Details