Search results

1 – 6 of 6
Open Access
Article
Publication date: 4 December 2020

Sergei O. Kuznetsov, Alexey Masyutin and Aleksandr Ageev

The purpose of this study is to show that closure-based classification and regression models provide both high accuracy and interpretability.

Abstract

Purpose

The purpose of this study is to show that closure-based classification and regression models provide both high accuracy and interpretability.

Design/methodology/approach

Pattern structures allow one to approach the knowledge extraction problem in case of partially ordered descriptions. They provide a way to apply techniques based on closed descriptions to non-binary data. To provide scalability of the approach, the author introduced a lazy (query-based) classification algorithm.

Findings

The experiments support the hypothesis that closure-based classification and regression allow one to both achieve higher accuracy in scoring models as compared to results obtained with classical banking models and retain interpretability of model results, whereas black-box methods grant better accuracy for the cost of losing interpretability.

Originality/value

This is an original research showing the advantage of closure-based classification and regression models in the banking sphere.

Details

Asian Journal of Economics and Banking, vol. 4 no. 3
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 20 September 2022

Joo Hun Yoo, Hyejun Jeong, Jaehyeok Lee and Tai-Myoung Chung

This study aims to summarize the critical issues in medical federated learning and applicable solutions. Also, detailed explanations of how federated learning techniques can be…

3043

Abstract

Purpose

This study aims to summarize the critical issues in medical federated learning and applicable solutions. Also, detailed explanations of how federated learning techniques can be applied to the medical field are presented. About 80 reference studies described in the field were reviewed, and the federated learning framework currently being developed by the research team is provided. This paper will help researchers to build an actual medical federated learning environment.

Design/methodology/approach

Since machine learning techniques emerged, more efficient analysis was possible with a large amount of data. However, data regulations have been tightened worldwide, and the usage of centralized machine learning methods has become almost infeasible. Federated learning techniques have been introduced as a solution. Even with its powerful structural advantages, there still exist unsolved challenges in federated learning in a real medical data environment. This paper aims to summarize those by category and presents possible solutions.

Findings

This paper provides four critical categorized issues to be aware of when applying the federated learning technique to the actual medical data environment, then provides general guidelines for building a federated learning environment as a solution.

Originality/value

Existing studies have dealt with issues such as heterogeneity problems in the federated learning environment itself, but those were lacking on how these issues incur problems in actual working tasks. Therefore, this paper helps researchers understand the federated learning issues through examples of actual medical machine learning environments.

Details

International Journal of Web Information Systems, vol. 18 no. 2/3
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 6 March 2017

Zhuoxuan Jiang, Chunyan Miao and Xiaoming Li

Recent years have witnessed the rapid development of massive open online courses (MOOCs). With more and more courses being produced by instructors and being participated by…

2132

Abstract

Purpose

Recent years have witnessed the rapid development of massive open online courses (MOOCs). With more and more courses being produced by instructors and being participated by learners all over the world, unprecedented massive educational resources are aggregated. The educational resources include videos, subtitles, lecture notes, quizzes, etc., on the teaching side, and forum contents, Wiki, log of learning behavior, log of homework, etc., on the learning side. However, the data are both unstructured and diverse. To facilitate knowledge management and mining on MOOCs, extracting keywords from the resources is important. This paper aims to adapt the state-of-the-art techniques to MOOC settings and evaluate the effectiveness on real data. In terms of practice, this paper also tries to answer the questions for the first time that to what extend can the MOOC resources support keyword extraction models, and how many human efforts are required to make the models work well.

Design/methodology/approach

Based on which side generates the data, i.e instructors or learners, the data are classified to teaching resources and learning resources, respectively. The approach used on teaching resources is based on machine learning models with labels, while the approach used on learning resources is based on graph model without labels.

Findings

From the teaching resources, the methods used by the authors can accurately extract keywords with only 10 per cent labeled data. The authors find a characteristic of the data that the resources of various forms, e.g. subtitles and PPTs, should be separately considered because they have the different model ability. From the learning resources, the keywords extracted from MOOC forums are not as domain-specific as those extracted from teaching resources, but they can reflect the topics which are lively discussed in forums. Then instructors can get feedback from the indication. The authors implement two applications with the extracted keywords: generating concept map and generating learning path. The visual demos show they have the potential to improve learning efficiency when they are integrated into a real MOOC platform.

Research limitations/implications

Conducting keyword extraction on MOOC resources is quite difficult because teaching resources are hard to be obtained due to copyrights. Also, getting labeled data is tough because usually expertise of the corresponding domain is required.

Practical implications

The experiment results support that MOOC resources are good enough for building models of keyword extraction, and an acceptable balance between human efforts and model accuracy can be achieved.

Originality/value

This paper presents a pioneer study on keyword extraction on MOOC resources and obtains some new findings.

Details

International Journal of Crowd Science, vol. 1 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 25 August 2021

Weiwei Zhu, Jinglin Wu, Ting Fu, Junhua Wang, Jie Zhang and Qiangqiang Shangguan

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great…

1535

Abstract

Purpose

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.

Design/methodology/approach

This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing.

Findings

Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction.

Research limitations/implications

The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.

Practical implications

The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications.

Originality/value

This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

1 – 6 of 6