Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2383

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 16 January 2020

Magda Joachimiak

In this paper, the Cauchy-type problem for the Laplace equation was solved in the rectangular domain with the use of the Chebyshev polynomials. The purpose of this paper is to…

4500

Abstract

Purpose

In this paper, the Cauchy-type problem for the Laplace equation was solved in the rectangular domain with the use of the Chebyshev polynomials. The purpose of this paper is to present an optimal choice of the regularization parameter for the inverse problem, which allows determining the stable distribution of temperature on one of the boundaries of the rectangle domain with the required accuracy.

Design/methodology/approach

The Cauchy-type problem is ill-posed numerically, therefore, it has been regularized with the use of the modified Tikhonov and Tikhonov–Philips regularization. The influence of the regularization parameter choice on the solution was investigated. To choose the regularization parameter, the Morozov principle, the minimum of energy integral criterion and the L-curve method were applied.

Findings

Numerical examples for the function with singularities outside the domain were solved in this paper. The values of results change significantly within the calculation domain. Next, results of the sought temperature distributions, obtained with the use of different methods of choosing the regularization parameter, were compared. Methods of choosing the regularization parameter were evaluated by the norm Nmax.

Practical implications

Calculation model described in this paper can be applied to determine temperature distribution on the boundary of the heated wall of, for instance, a boiler or a body of the turbine, that is, everywhere the temperature measurement is impossible to be performed on a part of the boundary.

Originality/value

The paper presents a new method for solving the inverse Cauchy problem with the use of the Chebyshev polynomials. The choice of the regularization parameter was analyzed to obtain a solution with the lowest possible sensitivity to input data disturbances.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 January 2023

Tuomo Peltonen and Sirkka-Liisa Huhtinen

While there is anecdotal evidence that internationally mobile workers often form isolated nation-based communities or “expatriate bubbles,” previous academic scholarship on the…

Abstract

Purpose

While there is anecdotal evidence that internationally mobile workers often form isolated nation-based communities or “expatriate bubbles,” previous academic scholarship on the expatriate communities and their subjective boundaries is limited. The primary purpose of this article is to advance the theoretical or conceptual understanding of expatriate communities as bubbles.

Design/methodology/approach

As developed by Lamont and Molnár (2002), the theory of symbolic boundaries is applied and set to scrutinize the production and maintenance of insulated expatriate communities. Empirically, an ethnographic study of a community of Finnish expatriates in a Southeast Asian country is undertaken to describe how symbolic boundaries are constructed.

Findings

The main theoretical implication of the paper is the recognition that expatriates themselves are involved in creating the “bubble.” The boundaries separating the national expatriate community are not externally imposed but can be viewed as consequences of the active boundary work of the expatriates. The empirical study demonstrates how the Finnish expatriates negotiated the symbolic boundaries of their community, drawing on cultural, moral and spatial modalities in different levels of boundary work.

Originality/value

There need to be more systematic attempts to develop a theoretically grounded understanding of insulated expatriate communities and their boundaries. This article contributes to the sociological conceptualization of expatriate bubbles by utilizing the symbolic boundary approach, which adds perspective to the embryonic theory of the subjective boundaries of expatriate communities. The multiplicity of different types of symbolic boundaries and their modalities suggests that an expatriate bubble is rarely a finished state or structure.

Details

Journal of Global Mobility: The Home of Expatriate Management Research, vol. 11 no. 1
Type: Research Article
ISSN: 2049-8799

Keywords

Open Access
Article
Publication date: 24 October 2022

Suzana Sukovic, Jamaica Eisner and Kerith Duncanson

Effective use of data across public health organisations (PHOs) is essential for the provision of health services. While health technology and data use in clinical practice have…

Abstract

Purpose

Effective use of data across public health organisations (PHOs) is essential for the provision of health services. While health technology and data use in clinical practice have been investigated, interactions with data in non-clinical practice have been largely neglected. The purpose of this paper is to consider what constitutes data, and how people in non-clinical roles in a PHO interact with data in their practice.

Design/methodology/approach

This mixed methods study involved a qualitative exploration of how employees of a large PHO interact with data in their non-clinical work roles. A quantitative survey was administered to complement insights gained through qualitative investigation.

Findings

Organisational boundaries emerged as a defining issue in interactions with data. The results explain how data work happens through observing, spanning and shifting of boundaries. The paper identifies five key issues that shape data work in relation to boundaries. Boundary objects and processes are considered, as well as the roles of boundary spanners and shifters.

Research limitations/implications

The study was conducted in a large Australian PHO, which is not completely representative of the unique contexts of similar organisations. The study has implications for research in information and organisational studies, opening fields of inquiry for further investigation.

Practical implications

Effective systems-wide data use can improve health service efficiencies and outcomes. There are also implications for the provision of services by other health and public sectors.

Originality/value

The study contributes to closing a significant research gap in understanding interactions with data in the workplace, particularly in non-clinical roles in health. Research analysis connects concepts of knowledge boundaries, boundary spanning and boundary objects with insights into information behaviours in the health workplace. Boundary processes emerge as an important concept to understand interactions with data. The result is a novel typology of interactions with data in relation to organisational boundaries.

Details

Global Knowledge, Memory and Communication, vol. 73 no. 4/5
Type: Research Article
ISSN: 2514-9342

Keywords

Open Access
Article
Publication date: 11 April 2021

Pascal Dussart, Lise A. van Oortmerssen and Bé Albronda

The purpose of this paper is to provide insights into cross-functional team (CFT) members’ points of view on knowledge integration.

3539

Abstract

Purpose

The purpose of this paper is to provide insights into cross-functional team (CFT) members’ points of view on knowledge integration.

Design/methodology/approach

This study was conducted using Q methodology. The 22 respondents were members of CFTs in information systems development within 7 agencies of the Flemish Government administration.

Findings

The study resulted in three distinct perspectives. To the CFT player, the benefits and added value of information and knowledge diversity of CFTs outweigh the challenges of knowledge integration. By contrast, the CFT sceptic is doubtful that knowledge integration in CFTs can ever work at all. Finally, the organization critic highlights the lack of support from the organization for efficient and effective knowledge integration in CFTs.

Research limitations/implications

The findings of this study suggest that CFT configurations have important implications for the development of shared team mental models and for teams’ cognitive performance.

Practical implications

Making CFT members aware of their peers’ mental models, ways of working and priorities could help strengthen knowledge integration. To improve knowledge integration in teams, managers should reduce knowledge boundaries that are the result of organizational structuring and power play between departments.

Originality/value

By focusing on daily experiences with knowledge integration, this study reveals that members of CFTs in information systems development hold contrasting perspectives on, and diverging attitudes towards, knowledge integration.

Details

Team Performance Management: An International Journal, vol. 27 no. 3/4
Type: Research Article
ISSN: 1352-7592

Keywords

Open Access
Article
Publication date: 9 August 2023

Jie Zhang, Yuwei Wu, Jianyong Gao, Guangjun Gao and Zhigang Yang

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of…

390

Abstract

Purpose

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.

Design/methodology/approach

Based on large eddy simulation (LES) method and Kirchhoff–Ffowcs Williams and Hawkings (K-FWH) equations, the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.

Findings

The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train. The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train, the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car, and the quadrupole sources are mainly distributed in the wake area. When the train runs at three speed levels of 400, 500 and 600 km·h−1, respectively, the radiated energy of quadrupole source is 62.4%, 63.3% and 71.7%, respectively, which exceeds that of dipole sources.

Originality/value

This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 14 April 2023

Gideon Daniel Joubert and Atanda Kamoru Raji

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this…

Abstract

Purpose

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.

Design/methodology/approach

The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.

Findings

Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.

Originality/value

To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 2 March 2021

Samira Ramdane and Assia Guezane-Lakoud

The paper deals with the existence of positive solutions for a coupled system of nonlinear fractional differential equations with p-Laplacian operator and involving both right…

Abstract

Purpose

The paper deals with the existence of positive solutions for a coupled system of nonlinear fractional differential equations with p-Laplacian operator and involving both right Riemann–Liouville and left Caputo-type fractional derivatives. The existence results are obtained by the help of Guo–Krasnosel'skii fixed-point theorem on a cone in the sublinear case. In addition, an example is included to illustrate the main results.

Design/methodology/approach

Fixed-point theorems.

Findings

No finding.

Originality/value

The obtained results are original.

Details

Arab Journal of Mathematical Sciences, vol. 27 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

1 – 10 of over 3000