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Abstract
Purpose – In this paper, the Cauchy-type problem for the Laplace equation was solved in the rectangular
domain with the use of the Chebyshev polynomials. The purpose of this paper is to present an optimal choice
of the regularization parameter for the inverse problem, which allows determining the stable distribution of
temperature on one of the boundaries of the rectangle domain with the required accuracy.
Design/methodology/approach – The Cauchy-type problem is ill-posed numerically, therefore, it has
been regularized with the use of the modified Tikhonov and Tikhonov–Philips regularization. The influence of
the regularization parameter choice on the solution was investigated. To choose the regularization parameter,
the Morozov principle, the minimum of energy integral criterion and the L-curve method were applied.
Findings – Numerical examples for the function with singularities outside the domain were solved in this
paper. The values of results change significantly within the calculation domain. Next, results of the sought
temperature distributions, obtained with the use of different methods of choosing the regularization parameter,
were compared. Methods of choosing the regularization parameter were evaluated by the normNmax.
Practical implications – Calculation model described in this paper can be applied to determine
temperature distribution on the boundary of the heated wall of, for instance, a boiler or a body of the turbine,
that is, everywhere the temperature measurement is impossible to be performed on a part of the boundary.
Originality/value – The paper presents a new method for solving the inverse Cauchy problem with the
use of the Chebyshev polynomials. The choice of the regularization parameter was analyzed to obtain a
solution with the lowest possible sensitivity to input data disturbances.

Keywords Inverse Cauchy problem, L-curve, Minimum of energy integral criterion,
Morozov principle, Regularization parameter, Laplace’s equation, Regularization

Paper type Research paper

Nomenclature
a = multinomial coefficient of the function of distribution of temperature ~T wð Þ;
c = multinomial coefficient of the function of distribution of temperature T (x, y);
E (a) = functional, energy integral;
Ja = regularizing functional (Ja = Jþ a2I );
m = number of Chebyshev nodes on the y-axis;
n = number of Chebyshev nodes on the x-axis;
N1–1 = degree of the polynomial describing unknown distribution of temperature on the C1 boundary;
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Nmax = norm;
q = heat flux density, W/m2K;
T = temperature, K;
~T = temperature, function dependent on the Chebyshev node;
w = Chebyshev node;
Wi = Chebyshev polynomial of the first kind of i-th degree;
x, y = Cartesian coordinates;
[x]n = integer part of the division of number x by n; and
xmod n = remainder of the division of number x by n.

Greek symbols
a = regularization parameter;
d = error;
dM = error of measurement data (Morozov principle);
g = multinomial coefficient, pertains to the sought temperature distribution on the boundary C1;
C = boundary of the domain X, (C = C1 | C2| C3 | C4); and
X = calculation domain.

Subscript
A = analytical solution;
c = calculated value;
m = measured value;
ran = randomly disturbed value; and
Ci = on the boundary Ci (for i = 1, 2, 3 and 4).

1. Introduction
Inverse problems are ill-posed in the Hadamard (1902) sense. It means that a slight disturbance
to measurement data results in significant errors of the obtained results (Joachimiak and
Ciałkowski, 2017, 2014, 2018; Nowak, 2017). Therefore, problems of such type need to be
regularized. There are many methods used to regularize inverse problems. Among them, there
is the Tikhonov regularization (Beck andWoodbury, 2016; Chen et al., 2019; Djerrar et al., 2017;
Frąckowiak et al., 2019a; Laneev, 2018; Marin, 2010, 2016; Niu et al., 2014; Sun, 2016; Tikhonov
and Arsenin, 1977; Yaparova, 2016), the Tikhonov–Philips regularization (Joachimiak et al.,
2019a), the discrete Fourier transform (Frąckowiak and Ciałkowski, 2018; Wr�oblewska et al.,
2015) and SVD algorithm (Hasanov and Mukanova, 2015). In her article, Cheruvu (2017)
applied the wavelet regularization of Laplace’s equation in the arbitrarily shaped domain. The
solution to the Cauchy problem for the Laplace’s equation was also sought with the use of the
iterative Tikhonov-type method (Delvare and Cimetière, 2017). Han et al. (2011) in the article
presented numerical tests concerning the solution to the Cauchy problem for Laplace’s equation
with the use of the energy regularization method. Obtained results were compared with the
Tikhonov regularization for which the regularization parameter was chosen based on the
Morozov principle. In the paper of Liu and Wang (2018), the Cauchy problem for the Laplace’s
equation was solved with the use of the method of fundamental solutions and the energy
regularization technique to choose the source points. The Laplace’s equation was also solved
with the use of iterative algorithms (Frąckowiak et al., 2015a, 2015b), of the Trefftz method
(Ciałkowski and Frąckowiak, 2002; Ciałkowski and Grysa, 2010; Grysa et al., 2012; Ho_zejowski,
2016; Lin et al., 2018), of the method of fundamental solution (Kołodziej and Mierzwiczak, 2008;
Mierzwiczak et al., 2015; Mierzwiczak and Kołodziej, 2011) and of the collocation method
(Joachimiak et al., 2016). In many cases, the regularization of the inverse problem concerns the
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problem of choosing the regularization parameter. The regularization parameter can be chosen
based on the Morozov principle (Chen et al., 2019; Han et al., 2011; Joachimiak et al., 2019a;
Marin, 2016; Morozov, 1984; Sun, 2016) or using the L-curve method (Jin and Zheng, 2006;
Marin and Munteanu, 2010; Marin, 2005). In the study of Marin (2011), the optimal
regularization parameter was sought based on the generalized cross-validation criterion.
Currently, research work focuses on finding new methods of regularization (Cheng and Feng,
2014; Zhuang and Chen, 2017) and on the modification of already known and used methods
(Yang et al., 2015; Zheng and Zhang, 2018). Because of a wide application of inverse problems
in engineering problems, such as the cooling of the blades in gas turbines (Frąckowiak et al.,
2017; Frąckowiak et al., 2019b; Frąckowiak et al., 2011), analysis of the boiling heat transfer in
minichannels (Ho_zejowska et al., 2009; Maciejewska and Piasecka, 2017), analysis of thermal
and thermo-chemical treatment (Joachimiak et al., 2019b) or monitoring of power boilers
operation (Taler et al., 2016, 2017), developingmethods for regularization of these problems and
investigating the process of choosing the regularization parameter are very significant.

In this article, the solution to the Cauchy problem for the Laplace’s equation was
investigated with the use of the Chebyshev polynomials. To regularize the solution to the
inverse problem, the modification of the Tikhonov and of the Tikhonov–Philips
regularizations, described in the article (Joachimiak et al., 2019a) was applied. The choice of
the regularization parameter was made based on the Morozov principle, the minimum
energy integral criterion and the L-curve method.

2. Calculation model
In many technical applications, it is impossible to measure temperature on the boundary of
the heated component of the device or machine, such as the combustion chamber, the inner
side of the body of a turbine or a boiler. Then, the distribution of temperature can be
determined by finding the solution to the inverse problem. Based on the distribution of
temperature on the part of the boundary TC2 ;TC3 ;TC4 ; fig: 1

� �
and, additionally, knowing

the heat flux density on the part of the boundary qC3 ; fig: 1
� �

one can determine the
distribution of temperature on the boundary, where it is impossible to measure this
temperature TC1 ; fig: 1

� �
. Such a posed problem is the Cauchy problem, particularly

sensitive to errors in measurement and in the calculation. In the stationary thermal field, the
heat equation is reduced to the Laplace’s equation (for the non-linear case, the Kirchhoff’s
substitution transforms the heat equation into the Laplace’s equation).

@2T
@x2

þ @2T
@y2

¼ 0 (1)

Laplace’s equation is solved in the domain X = {(x, y) [ R2: �1# x # 1, �1# y # 1} with
the following boundary conditions (Figure 1):

T x; y ¼ 1ð Þ ¼ TC2 xð Þ for � 1# x# 1 (2)

T x ¼ �1; yð Þ ¼ TC3 yð Þ for � 1# y# 1 (3)

@T x ¼ �1; yð Þ
@n

¼ qC3 yð Þ for � 1# y# 1 (4)

T x; y ¼ �1ð Þ ¼ TC4 xð Þ for � 1# x# 1 (5)
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It was assumed that the solution can be noted as the linear combination of the Chebyshev
polynomials (Paszkowski, 1975).

T xi; yjð Þ ¼
Xn�1

p¼0

Xm�1

q¼0

cpqWp xið ÞWq yjð Þ (6)

To solve the Cauchy problem, the collocation method was used. It was assumed that there
are n points along the x-axis and m points along the y-axis (including points on the
boundary). Collocation points being inside the interval (�1, 1) are the Chebyshev nodes
(Paszkowski, 1975). Nodes were renumbered, which enables the temperature function to be
noted in the following equation (7):

~T wlð Þ ¼
Xmn

k¼1

akW k�1½ �m x l�1ð Þmodnþ1ð ÞW k�1ð Þmodm y l�1½ �n þ 1ð Þ (7)

where the coefficients ak (k = 1, 2, . . .,mn) are unknown. Sought temperature distribution on
the boundary C1 was assumed as the linear combination of the Chebyshev polynomials
(Paszkowski, 1975).

TC1 yð Þ ¼
XN1

h¼1

g hWh�1 yð Þ (8)

Coefficients ak (k = 1, 2, . . ., mn) are expressed by the values of coefficients g i (i = 1, 2, . . .,
N1). Hence, the determination of the temperature distribution is reduced to the determination
of coefficients g i. To do so, the functional of the following formwasminimized.

J ¼
ð
C2

Tc;C2 � Tm;C2

� �2dC2 þ
ð
C3

Tc;C3 � Tm;C3

� �2dC3 þ
ð
C3

@Tc;C3

@n
� qm;C3

� �2

dC3

þ
ð
C4

Tc;C4 � Tm;C4

� �2dC4 (9)

where c in subscript denotes the calculated value, while m denotes the measured value. The
integral in equation (9) on the boundaryC2 can be noted in the following equation (10):

Figure 1.
Calculation domain
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JC2 ¼
ð
C2

Tc;C2 � Tm;C2

� �2dC2 ¼
Xn
i¼1

ð
C2i

Tc;C2i � Tm;C2i

� �2dC2i (10)

Applying numerical integration we have:

JC2 ¼
Xn
i¼1

Dxi Tc xi; 1ð Þ � Tm xi; 1ð Þð Þ2 ¼
Xn
i¼1

ffiffiffiffiffiffiffi
Dxi

p
Tc xi; 1ð Þ � Tm xi; 1ð Þð Þ

� �2
(11)

where Dx1 ¼ x2 � x1
2 , Dxi ¼ xiþ1 � xi�1

2 for i = 2, 3, . . ., n�1 and Dxn ¼ xn�xn�1
2 . Having inserted

the equation (7) into the equation (11), we obtained:

JC2 ¼
Xn
i¼1

ffiffiffiffiffiffiffi
Dxi

p Xmn

k¼1

akW k�1½ �m xið ÞW k�1ð Þmodm 1ð Þ � Tm xi; 1ð Þ
 ! !2

(12)

Solving the direct problem, where the temperature on boundaries C1, C2, C3 and C4 was
known, was reduced to solving thematrix equation

Ax ¼ b (13)

what was described in detail in the paper (Joachimiak et al., 2019a). Based on the solution to
the direct problem, constants ak [Equation (12)] are of the following equation (14):

ak ¼ Fk þ
XN1

h¼1

g hHh;k (14)

where Hh;k ¼
Xm�1

j¼2

~Ak;jnWh�1 yjð Þ, while ~Ak;jn (k = 1, 2, . . ., mn; j = 2, 3, . . ., m � 1) are

elements of the matrixA�1. After substituting equation (14) into equation (12) we obtained:

JC2 ¼
Xn
i¼1

ffiffiffiffiffiffiffi
Dxi

p Xmn

k¼1

Fk þ
XN1

h¼1

g hHh;k

0
@

1
AW k�1½ �m xið ÞW k�1ð Þmodm 1ð Þ � Tm xi; 1ð Þ

0
@

1
A

0
@

1
A

2

¼
Xn
i¼1

XN1

h¼1

g h

Xmn

k¼1

ffiffiffiffiffiffiffi
Dxi

p
Hh;kW k�1½ �m xið ÞW k�1ð Þmodm 1ð Þ

0
@

þ
Xmn

k¼1

ffiffiffiffiffiffiffi
Dxi

p
FkW k�1½ �m xið ÞW k�1ð Þmodm 1ð Þ � Tm xi; 1ð ÞÞ2

¼
Xn
i¼1

XN1

h¼1

g hC1 i; hð Þ � D1 ið Þ
0
@

1
A

2

(15)

We would like the integral JC2 to have a value equal to zero or as close to zero as possible,
hence, we equate the squared expression [Equation (15)] to zero. Hence, we have that:
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8
i¼1;2;...;n

XN1

h¼1

g hC1 i; hð Þ ¼ D1 ið Þ (16)

We obtain n linear equations of the following equation (17):

C1 i; hð Þ	 

g hf g ¼ D1 ið Þ (17)

for i= 1, 2, . . ., n and h= 1, 2, . . .,N1. It can be reduced to thematrix equation.

C1;n
� �

gf g ¼ D1;n
	 


(18)

Similarly, for other integrals [Equation (9)] we obtained:

JC3 ¼
ð
C3

Tc;C3 � Tm;C3

� �2dC3 ¼
Xm
i¼1

XN1

h¼1

g hC2 i; hð Þ � D2 ið Þ
0
@

1
A

2

(19)

Jq;C3 ¼
ð
C3

@Tc;C3

@n
� qm;C3

� �2

dC3 ¼
Xm
i¼1

XN1

h¼1

g hC3 i; hð Þ � D3 ið Þ
0
@

1
A

2

(20)

JC4 ¼
ð
C4

Tc;C4 � Tm;C4

� �2dC4 ¼
Xn
i¼1

XN1

h¼1

g hC4 i; hð Þ � D4 ið Þ
0
@

1
A

2

(21)

After JC3 , Jq;C3 and JC4 had been equated to zero, equations of the following forms were
obtained:

8
i¼1;2;...;m

XN1

h¼1

g hC2 i; hð Þ ¼ D2 ið Þ (22)

8
i¼1;2;...;m

XN1

h¼1

g hC3 i; hð Þ ¼ D3 ið Þ (23)

8
i¼1;2;...;n

XN1

h¼1

g hC4 i; hð Þ ¼ D4 ið Þ (24)

Based on equations (16) and (22)-(24), an oversized system of linear equations was obtained
as the matrix equation, which would be solved with the use of the SVD algorithm:
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C1;n
� �
C2;m
� �
C3;m
� �
C4;n
� �

2
666664

3
777775 gf g ¼

D1;n
	 

D2;m
	 

D3;m
	 

D4;n
	 


8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(25)

what can be noted in the shorter form:
BM½ � gf g ¼ BWf g (26)

Because of a great sensitivity of results to disturbances to measurement data, the Cauchy
problemwas regularized. The regularizing functional of the following formwas assumed:

Ja ¼ J gð Þ þ a2I gð Þ ¼
½BM � gf g � BWf g


2

þ a2
ð
C1

~Tð Þ2 þ @ ~T
@y

 !2
0
@

1
AdC1

(27)

Regularization term can be noted as the sum of integrals.

a2I gð Þ ¼ a2
ð
C1

~Tð Þ2 þ @ ~T
@y

 !2
0
@

1
AdC1 ¼ a2

Xm�1

i¼1

ð
C1i

~Tð Þ2 þ @ ~T
@y

 !2
0
@

1
AdC1i (28)

where C1 ¼ [m�1

i¼1
C1i . Performing numerical integration using the trapezoidal rule, we

obtained:

a2I gð Þ ¼
Xm�1

i¼1

a2 yiþ1 � yi
2

~T 1; yiþ1ð Þ
� �2

þ @ ~T 1; yiþ1ð Þ
@y

 !2

þ ~T 1; yið Þ
� �2

þ @ ~T 1; yið Þ
@y

 !2
2
4

3
5

(29)

On the boundaryC1 we have:

~T 1; yið Þ ¼
Xmn

k¼1

akW k�1½ �m 1ð ÞW k�1ð Þmodm yið Þ ¼
Xmn

k¼1

Fk þ
XN1

h¼1

ghHh;k

0
@

1
AW k�1½ �m 1ð ÞW k�1ð Þmodm yið Þ ¼

¼
Xmn

k¼1

FkW k�1½ �m 1ð ÞW k�1ð Þmodm yið Þ þ
XN1

h¼1

g h

Xmn

k¼1

Hh;kW k�1½ �m 1ð ÞW k�1ð Þmodm yið Þ ¼

¼ A1 ið Þ þ
XN1

h¼1

g hA2 i; hð Þ

(30)

@ ~T 1; yið Þ
@y

¼
Xmn

k¼1

FkW k�1½ �m 1ð ÞW 0
k�1ð Þmodm yið Þ þ

XN1

h¼1

g h

Xmn

k¼1

Hh;kW k�1½ �m 1ð ÞW 0
k�1ð Þmodm yið Þ ¼

¼ A3 ið Þ þ
XN1

h¼1

g hA4 i; hð Þ

(31)

Hence,
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a2I gð Þ ¼
Xm�1

i¼1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A1 i þ 1ð Þ þ

XN1

h¼1

g hA2 i þ 1; hð Þ
0
@

1
A

8<
:

9=
;

2

þ
Xm�1

i¼1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A3 i þ 1ð Þ þ

XN1

h¼1

g hA4 i þ 1; hð Þ
0
@

1
A

8<
:

9=
;

2

þ
Xm�1

i¼1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A1 ið Þ þ

XN1

h¼1

g hA2 i; hð Þ
0
@

1
A

8<
:

9=
;

2

þ
Xm�1

i¼1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A3 ið Þ þ

XN1

h¼1

g hA4 i; hð Þ
0
@

1
A

8<
:

9=
;

2

(32)

Each of the components [Equation (32)] was equated to zero. The equation of the following
formwas obtained:

8
i¼1;2;...;m�1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A1 i þ 1ð Þ þ

XN1

h¼1

g hA2 i þ 1; hð Þ
0
@

1
A ¼ 0 (33)

8
i¼1;2;...;m�1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A3 i þ 1ð Þ þ

XN1

h¼1

g hA4 i þ 1; hð Þ
0
@

1
A ¼ 0 (34)

8
i¼1;2;...;m�1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A1 ið Þ þ

XN1

h¼1

g hA2 i; hð Þ
0
@

1
A ¼ 0 (35)

8
i¼1;2;...;m�1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

2

r
A3 ið Þ þ

XN1

h¼1

g hA4 i; hð Þ
0
@

1
A ¼ 0 (36)

Equations (33)-(36) can be reduced to the following system of equations.

a CM½ � gf g ¼ �a CWf g (37)

where a is the regularization parameter. When the equation (26) and regularization
[Equation (37)] are included, the following system of equations is obtained:

BM½ �
a CM½ �
� �

gf g ¼ BWf g
�a CWf g

� �
(38)

The solution to the system of equations (38) was sought in the least-squares sense with the
use of the SVD algorithm.
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3. Choice of the regularization parameter
To determine unknown regularization parameter a, the Morozov principle, the minimum of
energy integral criterion and L-curve method were applied. For the solution obtained with the
use of the Morozov principle, the mean (Morozov_A) and the maximal (Morozov_B) errors of
the heat flux density dM on the boundary C3 were evaluated. Interval halving method was
used to determine zero of the function FM (a) defined by the following equation (39): BM½ � gf g � BWf g


2

� d 2
M ¼ FM (39)

Unknown regularization parameter a was also sought based on the minimization of the
functional (energy integral) of the following equation (40):

E að Þ ¼
ð
X

rT að Þ� �2dX;T að Þ 2 C2 Xð Þ (40)

where rT að Þ� �2 ¼ @T að Þ
@x

� �2
þ @T að Þ

@y

� �2
. The minimum of the energy integral corresponds

to satisfying the Laplace’s equation (with respective boundary conditions), which is
discussed in the paper (Gelfand and Fomin, 1979). Therefore, we choose the parameter a for
which min

a
E að Þ occurs, i.e. the derivative E0 ¼ dE

da reverses the sign. Domain X was divided

into rectangular domains with the use of equidistant nodes and next into domains being
right-angled triangles. The integral value was calculated with the use of the finite element
method. ValuerTwas determined based on the form of the solution equation (6). Values gh
were obtained by solving the equation (38).

On the basis of the solution of the equation (38), the L-curve was drawn as the correlation
between k[BM]{g} � {BW}k on the x-axis and k[CM]{g} � {CW}k on the y-axis. We
sought for the regularization parameter a with which corresponded the point of the L-curve
locating on the curvature of this line. To evaluate the choice of the regularization parameter
a, the following normwas defined:

Nmax ¼
max

����TC1_C � TC1_A

����
max

����TC1_A

����
(41)

4. Numerical examples
Calculations were made in the domainX for the function.

f1 ¼ ln x� að Þ2 þ y� bð Þ2
� �

; q1;C3 ¼
2 �1� að Þ

�1� að Þ2 þ y� bð Þ2
(42)

and

f2 ¼ Re
1

z� aþ bið Þ
� �

¼ x� a

x� að Þ2 þ y� bð Þ2
; q2;C3 ¼

� �1� að Þ2 þ y� bð Þ2

�1� að Þ2 þ y� bð Þ2
h i2

(43)
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We assumed such values of constants a and b that singularities would be outside the
calculation domain X and that the values of gradients would change significantly
within this domain (a = 1.3, b = 1.3, b = 1.1). Values of the norm Nmax [Equation (41)],
not including the regularization [Equation (26)], without disturbance (dran = 0) and
with random disturbance to the heat flux density up to 0.01q (dran = 0.01) and to 0.02q
(dran = 0.02) are summarized in Table I. Disturbance q is an additive function with the
uniform distribution. A slight disturbance to measurement data results in a
significant error of the sought temperature on the boundary C1. Hence, it is necessary
to regularize the inverse problem [Equation (38)] and to choose the regularization
parameter a properly.

4.1 Example 1
Calculations were made for the function f1 [Equation (42)]. Heat flux density was
disturbed randomly to 0.02q (dran = 0.02). Regularization parameter a was chosen with
the use of the Morozov principle, the minimum of energy integral criterion and the L-
curve method.

Figure 2 presents the course of the energy integral and its derivative depending on the
parameter a. To solve the Cauchy problem, the authors applied such value of
the regularization parameter a for which the energy integral E (a) took the minimal value,
which meant that the derivative of the energy integral E0 ¼ dE

da reversed the sign. The value
of a was 5.13 � 10�4 (Table II). The Cauchy problem was also regularized forTable I.

Values of the norm
Nmax for calculations
without
regularization (a =
0), without
disturbance (d ran =
0) and with random
disturbance to the
heat flux density up
to 0.01q (d ran = 0.01)
and 0.02q (d ran =
0.02)

Error of heat flux density
disturbed randomly

Nmax

f1 f2

d ran = 0 2.78·10�2 0.40047
d ran = 0.01 21978535 2814929
d ran = 0.02 43957070 5629859

Figure 2.
Energy integral (E)
and the derivative of
the energy integral
(E0) depending on the
value of the
regularization
parameter a
(function f1)
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the regularization parameter a amounting to 4.64 � 10�1, which was determined based on
the L-curve course (Figure 3).

To choose the regularization parameter with the Morozov principle, the values of mean
and maximal error dM were evaluated for the heat flux on the boundary C3. The respective
values were obtained: 0.008 and 0.02 (Table II). Next, zero of the function FM (a) was
calculated as per the equation (39). The respective values of the regularization parameter
were obtained: 1.98� 10�6 and 4.0799� 10�2 (Table II).

The lowest value of the normNmax amounting to 6.18� 10�2 (Table II) for the function f1
was obtained for the case of choosing the regularization parameter with the use of the
Morozov principle for the maximal error of the heat flux dM (Morozov_B). This criterion
brought satisfying results, as did the choice of the regularization parameter made with the
use of the minimum energy integral criterion (Nmax = 9.796 � 10�2). When the L-curve
method was used, the obtained results were considerably worse (Nmax = 2.22 � 10�1). For
theMorozov principle, for the mean error dM of the heat flux (Morozov_A), the highest value
of the norm Nmax amounting to 50.42 was obtained. Distributions of temperature on the
boundary C1 resulting from the analytical solution (AS) and from the solution of the Cauchy
problem are presented in Figure 4.

4.2 Example 2
Calculations were made for the function f2 [Equation (43)]. Heat flux density was disturbed
randomly to 0.02q (dran = 0.02). The best results were obtained for the choice of the
regularization parameter made with the use of the minimum energy integral criterion

Table II.
Values of the

measurement data
error dM, of the
regularization

parameter a and of
the norm Nmax for
the choice of the
regularization

parameter amade
using the Morozov

principle
(Morozov_A and
Morozov_B), the

minimum of energy
integral criterion (E)

and the L-curve
method (L-curve) for

the function f1

Method of the choice of the
regularization parameter dM a Nmax

Morozov_A 0.008 1.98� 10�6 50.42
Morozov_B 0.02 4.0799� 10�2 6.18� 10�2

E – 5.13� 10�4 9.796� 10�2

L-curve – 4.64� 10�1 2.22� 10�1

Figure 3.
L-curve with the

point for which the
regularization

parameter awas
chosen (function f1)
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problem for
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equation
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(Nmax = 4.77 � 10�2), and the worse results were obtained for the L-curve method (Nmax =
0.361). Values of the regularization parameter and of the norm Nmax, being the measure of
the quality of the parameter a choice, for the function f2 are summarized in Table III.
Distributions of temperature on the boundary C1 for the AS and for the solution to the
Cauchy problem with regularization are presented in Figure 5. Distribution of temperature
on the boundary C1 obtained with the use of the minimum of energy integral criterion
slightly diverges from the AS.

To examine thoroughly the criterion for the regularization parameter selection with the
use of the minimum of energy integral, calculations were performer also for the following
functions:

f3 ¼ cosxcoshyþ sinxsinhy (44)

f4 ¼ exsiny (45)

f5 ¼ x3 � 3xy2 þ e2ysin2x� excosy (46)

f6 ¼ ex
2�y2 sin2xy (47)

which were chosen based on publications (Liu et al., 2018; Conde Mones et al., 2017; Fu et al.,
2013; Sun, 2017). Values of the regularization parameter and of the norm Nmax for functions
f3 � f6 are summarized in Table IV. For the function f6 and the disturbance to the heat flux
density dran = 0.02 and dran = 0.05 the minimum of energy integral was not achieved.
Distributions of temperature on the boundary C1 being sought are presented in Figure 6. For

Figure 4.
Distribution of
temperature on the
boundaryC1

obtained from the AS
and form the Cauchy
problemwhen the
regularization
parameter awas
chosen with the use of
the Morozov principle
(Morozov_B), the
minimum of energy
integral criterion (E)
and the L-curve
method (L-curve) for
the function f1
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functions f3� f5 the disturbance dran = 0.05 was taken into account, and for the function f6 it
was dran= 0.01.

5. Conclusion
This paper presents the solution of the Cauchy problem for Laplace’s equation.
Obtained distributions of temperature on the boundary C1 were analyzed in terms of
the dependence on the method for choosing the regularization parameter. The best
results were obtained for the choice of the regularization parameter made with the use
of the minimum of energy integral criterion and the Morozov principle (dM is the
maximal error for the heat flux on the boundary C3). The advantage of the application
of the minimum energy integral criterion is a unique determination of the
regularization parameter a for which E (a) has minimal value. Regularization made
with the use of the minimum energy integral criterion gives satisfying results.
However, its disadvantage is the fact that not for all calculation examples the
minimum energy integral was determined. For the Morozov principle, the obtained

Table III.
Values of the

measurement data
error dM, of the
regularization

parameter a and of
the norm Nmax for
the choice of the
regularization

parameter amade
using the Morozov

principle
(Morozov_A and
Morozov_B), the

minimum of energy
integral criterion (E)
and of the L-curve

method (L-curve) for
the function f2

Method of the choice of the
regularization parameter dM a Nmax

Morozov_A 0.002 1.84� 10�3 0.115
Morozov_B 0.004 6.702� 10�3 0.174
E – 3.37� 10�4 4.77� 10�2

L-curve – 3.998� 10�1 0.361

Figure 5.
Distribution of

temperature on the
boundaryC1

obtained from the AS
and form the solution

to the Cauchy
problemwhen the

regularization
parameter awas

chosen with the use of
the Morozov principle

(Morozov_A and
Morozov_B), the

minimum of energy
integral criterion (E)
and of the L-curve

method (L-curve) for
the function f2
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results (distribution of temperature on the boundary C1) depend on calculation or
evaluation of the value of the heat flux dM error, what is a disadvantage of this
method. Inexact evaluation of the measurement data error can result in obtaining the
distribution of temperature on the boundary C1, which is subject to great uncertainty.
The choice of the parameter amade with the use of the L-curve method gave the worst
results. Smooth L-curve course was obtained, what was related to the problem with
the unique determination of the regularization parameter a using this method.

Table IV.
Values of the
regularization
parameter and of the
norm Nmax for
functions f3 � f6 with
the disturbance to the
heat flux density
d ran from 0.01 to 0.05

d ran = 0.01 d ran = 0.02 d ran = 0.05
Function a Nmax a Nmax a Nmax

f3 2.98� 10�2 2.38� 10�3 2.89� 10�2 4.49� 10�3 2.803� 10�2 1.107� 10�2

f4 4.99� 10�4 3.46� 10�2 1.0� 10�3 3.98� 10�2 1.0� 10�3 6.406� 10�2

f5 4.99� 10�4 3.46� 10�2 1.0� 10�3 3.98� 10�2 1.0� 10�2 2.16� 10�1

f6 1.0� 10�3 2.33� 10�1 No minimum No minimum

Figure 6.
Distribution of
temperature on the
boundaryC1

obtained from the AS
and form the solution
to the Cauchy
problemwhen the
regularization
parameter awas
chosen with the use of
the minimum of
energy integral
criterion (E) for
functions f2� f6
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