Search results

1 – 10 of 22
Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Content available
Book part
Publication date: 27 May 2024

Angelo Corelli

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Open Access
Article
Publication date: 29 May 2024

Mohanad Rezeq, Tarik Aouam and Frederik Gailly

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict…

Abstract

Purpose

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict. These security checkpoints have become highly utilized because of the complex security procedures and increased truck traffic, which significantly slow the delivery of relief aid. This paper aims to improve the process at security checkpoints by redesigning the current process to reduce processing time and relieve congestion at checkpoint entrance gates.

Design/methodology/approach

A decision-support tool (clearing function distribution model [CFDM]) is used to minimize the effects of security checkpoint congestion on the entire humanitarian supply network using a hybrid simulation-optimization approach. By using a business process simulation, the current and reengineered processes are both simulated, and the simulation output was used to estimate the clearing function (capacity as a function of the workload). For both the AS-IS and TO-BE models, key performance indicators such as distribution costs, backordering and process cycle time were used to compare the results of the CFDM tool. For this, the Kerem Abu Salem security checkpoint south of Gaza was used as a case study.

Findings

The comparison results demonstrate that the CFDM tool performs better when the output of the TO-BE clearing function is used.

Originality/value

The efforts will contribute to improving the planning of any humanitarian network experiencing congestion at security checkpoints by minimizing the impact of congestion on the delivery lead time of relief aid to the final destination.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Article
Publication date: 26 March 2024

Bernardo Nicoletti and Andrea Appolloni,

The logistics industry has undergone a tremendous transformation. This transformation is necessary to cope with the fundamental changes in customer expectations and the need for…

Abstract

Purpose

The logistics industry has undergone a tremendous transformation. This transformation is necessary to cope with the fundamental changes in customer expectations and the need for digitalization imposed by the pandemic, changes in the socioeconomic world, and innovative technology solutions. This paper aims to present digital transformation as an integrated framework for transforming the operating model and applying advanced solutions to the ecosystem of a quintile logistics (5PL) company. 5PL operators are typically an ecosystem. Loosely coupled or self-organized entities that collaborate in a symbiotic relationship represent this ecosystem. They aim to jointly develop capabilities, create innovative services or solutions, share knowledge, facilitate transactions, and leverage network synergies in a logistics environment to provide optimized or novel customer- or partner-centric solutions (Lamberjohann and Otto, 2020).

Design/methodology/approach

Currently, there is no single definition of an integrated logistics operations model in 5PL practice, so the qualitative method used in this paper allows for investigation from an exploratory perspective. The paper follows a qualitative research methodology, collecting and analyzing data/facts through interviews and visits to subject matter experts, industry practitioners, and academic researchers, combined with an extensive review of academic publications, industry reports, and written and media content from established organizations in the marketplace. This paper follows a qualitative research methodology, as it is an inquiry rather than a statistical study. The qualitative method allows the study of the concepts of phenomena and definitions, their characteristics, and the defining features that serve as the basis (Berg, 2007). It emphasizes generalized interpretation and deeper understanding of concepts, which would be more difficult in quantitative, statistically based research. Fact-finding was conducted in two ways: in-depth interviews with experts from academia, information and communication technology organizations, and key players in the logistics industry; and academic publications, industry reports, and written and media content from established national and international organizations in the market.

Findings

The operations model introduced considers six aspects: persons, processes, platforms, partners, protection and preservation. A virtual team approach can support the personal side of the 5PL ecosystem’s digital transformation. Managing a 5PL ecosystem should be based on collaborative planning, forecasting, and replenishment methods (Parsa et al., 2020). A digital platform can support trust among the stakeholders in the ecosystem. A blockchain solution can powerfully support the 5PL ecosystem from partner relationships’ points of view. The implementation of a cybersecurity reference model is important for protection (Bandari, 2023). Reverse logistics and an integrated approach support the preservation of the ecosystem.

Research limitations/implications

While the author has experience applying the different components of the operations model presented, it would be interesting to find a 5PL that would use all the components presented in an integrated way. The operations model presented applies to any similar ecosystem with minor adaptations.

Practical implications

This paper addresses operations models and digital transformation challenges for optimizing 5PL operators. It provides several opportunities and considerations for 5PL operators interested in improving their management and operations to cope with the growing challenges of today’s world.

Social implications

The competitiveness and long-term performance of 5PL operators depend on selecting and carefully implementing their operations models. This paper emphasizes the importance of using advanced operations models.

Originality/value

The operations model derives from the author’s personal experiences in research and the innovative application of these models to logistics operators (DHL, UPS, Poste Italiane and others). This paper brings together academic and industry perspectives and operations models in an integrated business digital transformation. This paper defines an original optimal operations model for a 5PL operator and can add sustainable value to organizations and society. In doing so, it outlines different solution requirements, the critical success factors and the challenges for solutions and brings logistical performance objectives when implementing a digital business transformation.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 28 March 2023

Peng Ma and Yujia Lu

Under the carbon tax policy, the authors examine the operational decisions of the low-carbon supply chain with the triple bottom line.

Abstract

Purpose

Under the carbon tax policy, the authors examine the operational decisions of the low-carbon supply chain with the triple bottom line.

Design/methodology/approach

This paper uses the Stackelberg game theory to obtain the optimal wholesale prices, retail prices, sales quantities and carbon emissions in different cases, and investigates the effect of the carbon tax policy.

Findings

This study’s main results are as follows: (1) the optimal retail price of the centralized supply chain is the lowest, while that of the decentralized supply chain where the manufacturer undertakes the carbon emission reduction (CER) responsibility and the corporate social responsibility (CSR) is the highest under certain conditions. (2) The sales quantity when the retailer undertakes the CER responsibility and the CSR is the largest. (3) The supply chain obtains the highest profits when the retailer undertakes the CER responsibility and the CSR. (4) The environmental performance impact decreases with the carbon tax.

Practical implications

The results of this study can provide decision-making suggestions for low-carbon supply chains. Besides, this paper provides implications for the government to promote the low-carbon market.

Originality/value

Most of the existing studies only consider economic responsibility and social responsibility or only consider economic responsibility and environmental responsibility. This paper is the first study that examines the operational decisions of low-carbon supply chains with the triple bottom line under the carbon tax policy.

Details

Kybernetes, vol. 53 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 March 2023

Zerun Fang, Wenlin Gui, Zhaozhou Han and Lan Lan

This study aims to propose a refined dynamic network slacks-based measure (DNSBM) to evaluate the efficiency of China's regional green innovation system which consists of basic…

Abstract

Purpose

This study aims to propose a refined dynamic network slacks-based measure (DNSBM) to evaluate the efficiency of China's regional green innovation system which consists of basic research, applied research and commercialization stages and explore the influencing factors of the stage efficiency.

Design/methodology/approach

A two-step procedure is employed. The first step proposes an improved DNSBM model with flexible settings of stages' input or output efficiency and uses second order cone programming (SOCP) to solve the non-linear problem. In the second step, least absolute shrinkage and selection operator (LASSO) and Tobit models are used to explore the influencing factors of the stage efficiency. Global Dynamic Malmquist Productivity Index (GDMPI) and Dagum Gini coefficient decomposition method are introduced for further discussion of the productivity change and regional differences.

Findings

On average, Chinese provincial green innovation efficiency should be improved by 24.11% to become efficient. The commercialization stage outperforms the stages of basic research and applied research. Comparisons between the proposed model and input-oriented, output-oriented and non-oriented DNSBM models show that the proposed model is more advanced because it allows some stages to have output-oriented model characteristics while the other stages have input-oriented model characteristics. The examination of the influencing factors reveals that the three stages of the green innovation system have quite diverse influencing factors. Further discussion reveals that Chinese green innovation productivity has increased by 39.85%, which is driven mainly by technology progress, and the increasing tendency of regional differences between northern and southern China should be paid attention to.

Originality/value

This study proposes an improved dynamic three-stage slacks-based measure (SBM) model that allows calculating output efficiency in some stages and input efficiency in the other stages with the application of SOCP approach. In order to capture productivity change, this study develops a GDMPI based on the DNSBM model. In practice, the efficiency of regional green innovation in China and the factors that influence each stage are examined.

Article
Publication date: 13 December 2022

Chandrasekaran Nagarajan, Indira A. and Ramasubramaniam M.

This study aims to analyse the structure of the Indian vaccine supply chain (SC) during the Covid-19 crisis and explore the underlying challenges at each stage in the network. It…

Abstract

Purpose

This study aims to analyse the structure of the Indian vaccine supply chain (SC) during the Covid-19 crisis and explore the underlying challenges at each stage in the network. It also brings out the difference in performance of various constituent states.

Design/methodology/approach

This study relied on both primary and secondary data for the analyses. For the primary data, the study gathered experts’ opinions to validate the authors’ inferences. For the secondary data, it relies on government data provided in websites.

Findings

Based on the quartile analysis and cluster analysis of the secondary data, the authors find that the constituent states responded differently during the first and second waves. This was due to the differences in SC characteristics attributed to varied demographics and administrative efficiency.

Research limitations/implications

This paper’s analyses is primarily limited to secondary information and inferences are based on them. The study has important implications for implementing the large-scale vaccination drives by government and constituent states for better coordination and last-mile delivery.

Originality/value

The contribution is unique in studying the performance of constituent states using statistical techniques, with secondary data from authentic sources. It is also unique in combining this observation with validation from experts.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

1 – 10 of 22