Search results

1 – 10 of 522
Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 July 2023

Hatice Cansu Ayaz Ümütlü, Zeki Kiral and Ziya Haktan Karadeniz

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean…

262

Abstract

Purpose

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean square values of the acceleration signals are evaluated to demonstrate the compatibility between the stall angles and the vibration levels.

Design/methodology/approach

An experimental study is conducted on NACA 4415 airfoil at Reynolds numbers 69e3, 77e3 and 85e3. Experiments are performed from 0° to 25° of the angles of attack (AoA) for each Reynolds number condition. To observe the change of the vibration values at the stall region clearly, experiments are performed with the AoA ranging from 10° to 25° in 1° increments. Three acceleration sensors are used to obtain the vibration data.

Findings

The results show that the increase in the amplitude of the vibration is directly related to the decrease in lift. These findings indicate that this approach could be beneficial in detecting stall on airfoil-type structures.

Originality/value

This study proposes a new approach for detecting stall over the airfoil using the vibration data.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 31 August 2023

Jingjing Shi, Ning Qian, Honghua Su, Ying Yang and Yiping Wang

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current…

Abstract

Purpose

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current piezoelectric vibrator generates a large amount of heat during vibration to degrade its performance, which in turn affects the normal operation of ultrasonic motors, this paper prepares a novel piezoelectric vibrator and tests its maximum vibration velocity under the working condition, which is more than twice as much as that of the current commercial PZT-8.

Design/methodology/approach

The crystal structures of the samples were analyzed by using an X-ray diffractometer. For microstructure observation, samples were observed by scanning electron microscope (SEM). The quasi-static piezoelectric coefficient meter (ZJ-3AN) was used for piezoelectric measurement. Dielectric properties were measured by utilizing an impedance analyzer (Agilent 4294A) with a laboratory heating unit. Ferroelectric hysteresis loops were obtained using a ferroelectric analyzer (Radiant, Multiferroic 100). A Doppler laser vibrometer (Polytec PSV-300F, Germany) and a power amplifier were used for piezoelectric vibration measurements, during which the temperature rise was determined by an infrared radiation thermometer (Victor 303, China).

Findings

The ceramics exhibit enhanced piezoelectric performance at 0.1–0.4 mol% of Yb doping contents. The ceramic of 0.4 mol% Yb reaches the maximal internal bias field and presents a larger mechanical quality factor of 1,692 compared with that of 0.2 mol% Yb-doped ceramic, in spite of a slightly decreased dielectric constant of 439 pC/N, the unit of the piezoelectric constant, which is the ratio of the local charge (pC) to the frontal force (N) and electromechanical coupling coefficient of 0.63. The vibrator with this large mechanical quality factor ceramic displays a vibration velocity of up to 0.81 m/s under the constraint of 20 °C temperature rising, which is much higher than commercial high-power piezoelectric ceramics PZT-8.

Originality/value

The enhanced high-power properties of the piezoelectric vibrator by Yb doping may provide a potential application for the high-performance USM and offer the possibility of long-term stable operation under high power for special equipment like USM. In the subsequent phase of research, the novel PZT-based high-power piezoelectric vibrator can be utilized in the USM, and the motor's performance will be evaluated under aerospace conditions to objectively assess the reliability of the piezoelectric vibrator.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 3
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 14 December 2023

Hongyan Zhu, Xiaochong Wu, Pengzhen Lv, Yuansheng Wang, Huagang Lin, Wei Liu and Zhufeng Yue

Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.

Abstract

Purpose

Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.

Design/methodology/approach

The proposed two-stage vibration isolation system of airborne equipment is optimized and parameterized based on multi-objective genetic algorithm.

Findings

The results show that compared with initial two-stage vibration isolation system, the angular vibration of the two-stage vibration isolation system becomes 3.55 × 10-4 rad, which decreases by 89%. The linear isolation effect is improved by at least 67.7%.

Originality/value

The optimized two-stage vibration isolation system effectively improves the vibration reduction effect, the resonance peak is obviously improved and the reliability of the mounting bracket and the shock absorber is highly improved, which provides an analysis method for two-stage airborne equipment isolation design under complex dynamic environment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 May 2022

Lalit K. Toke and Milind M. Patil

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Abstract

Purpose

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Design/methodology/approach

Due to presence of cracks the dynamic characteristics of structure change. The change in dynamic behavior has been used as one of the criteria of fault diagnosis for structures. Major characteristics of the structure which undergo change due to presence of crack are: natural frequencies, the amplitude responses due to vibration and the mode shapes. Therefore, an attempt has been made to formulate a smart technique for minimizing the amplitude of vibration for crack cantilever beam structures. In the analysis both single and double cracks are taken into account.

Findings

The results of the active vibration control experiments proved that piezoelectric sensor/actuator pair is an effective sensor and actuator configuration for active vibration control to reduce the amplitude of vibration for closed-loop system.

Originality/value

It is necessary that structures must safely work during its service life, but damages initiate a breakdown period on the structures which directly affect the industrial growth. It is a recognized fact that dynamic behavior of structures changes due to presence of crack. It has been observed that the presence of cracks in structures or in machine members leads to operational problem as well as premature failure.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

51

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 September 2023

Xinyu Zhang and Liling Ge

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the…

Abstract

Purpose

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

First, the differential body is set on a rotation platform before measuring. Then one laser sensor called as “primary sensor”, is installed on the intern of the differential body. The spherical surface and four holes on the differential body are sampled by the primary sensor when the rotation platform rotates one revolution. Another sensor called as “secondary sensor”, is installed above to sample the external cylinder surface and the planar surface on the top of the differential body, and the external cylinder surface and the planar surface are high in manufacturing precision, which are used as datum surfaces to compute the errors caused by the motion of the rotation platform. Finally, the sampled points from the primary sensor are compensated to improve the measurement accuracy.

Findings

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body. Based on the characteristics of the measurement data, a gradient image-based method is proposed to distinguish different objects from laser measurement data. A case study is presented to validate the measurement principle and data processing approach.

Research limitations/implications

The study investigates the possibility of correction of sensor data by the measurement results of multiple sensors to improving measurement accuracy. The proposed technique enables the error analysis and compensation by the geometric correlation relationship of various features on the measurand.

Originality/value

The proposed error compensation principle by using multiple sensors proved to be useful for the design of new measurement device for special part inspection. The proposed approach to describe the measuring data by image also is proved to be useful to simplify the measurement data processing.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 522