Search results

1 – 10 of 205
Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 17 October 2023

Abdelhadi Ifleh and Mounime El Kabbouri

The prediction of stock market (SM) indices is a fascinating task. An in-depth analysis in this field can provide valuable information to investors, traders and policy makers in…

Abstract

Purpose

The prediction of stock market (SM) indices is a fascinating task. An in-depth analysis in this field can provide valuable information to investors, traders and policy makers in attractive SMs. This article aims to apply a correlation feature selection model to identify important technical indicators (TIs), which are combined with multiple deep learning (DL) algorithms for forecasting SM indices.

Design/methodology/approach

The methodology involves using a correlation feature selection model to select the most relevant features. These features are then used to predict the fluctuations of six markets using various DL algorithms, and the results are compared with predictions made using all features by using a range of performance measures.

Findings

The experimental results show that the combination of TIs selected through correlation and Artificial Neural Network (ANN) provides good results in the MADEX market. The combination of selected indicators and Convolutional Neural Network (CNN) in the NASDAQ 100 market outperforms all other combinations of variables and models. In other markets, the combination of all variables with ANN provides the best results.

Originality/value

This article makes several significant contributions, including the use of a correlation feature selection model to select pertinent variables, comparison between multiple DL algorithms (ANN, CNN and Long-Short-Term Memory (LSTM)), combining selected variables with algorithms to improve predictions, evaluation of the suggested model on six datasets (MASI, MADEX, FTSE 100, SP500, NASDAQ 100 and EGX 30) and application of various performance measures (Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error(RMSE), Mean Squared Logarithmic Error (MSLE) and Root Mean Squared Logarithmic Error (RMSLE)).

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 11 July 2023

Sean W. Rowe, Vishal Arghode and Som Sekhar Bhattacharyya

The purpose of this research study was to explore the relationship between adaptive performance and work-related indicators of psychological well-being among ‘The Episcopal Church…

Abstract

Purpose

The purpose of this research study was to explore the relationship between adaptive performance and work-related indicators of psychological well-being among ‘The Episcopal Church bishops.’

Design/methodology/approach

Hierarchical regression models were used in this research study to explore the relationship between adaptive performance and work-related psychological health.

Findings

There was a positive correlation between adaptive performance and work-related psychological health. Demographic factors did not correlate to adaptive performance. However, a negative correlation was observed between the years ordained as a bishop and the interpersonal adaptability dimension of adaptive performance.

Research limitations/implications

Managing work stress has been revealed as an integral part of adaptive performance and satisfaction in ministry. Interpersonal adaptability and reactivity could be understood, then, as useful vehicles for increasing the capacity of bishops to manage work stress. In this research, the authors applied the Scale for Individual Adaptive Performance and the two scales Scale of Satisfaction in Ministry and Scale of Emotional Exhaustion in Ministry .

Practical implications

The results provided insights into the behaviors necessary for adequate development of bishops in their role. The religious landscape was becoming more challenging from a revenue generation perspective. The resultant complexity and the financial strain would necessitate the need for development of different models of ministry for long-term sustainability. This could further necessitate a different set of knowledge creation related to a set of behavioral capacities like those of adaptive performance. Such insights would assist in the promotion and development of greater work-related psychological health in bishops while deepening their ability to deal with complex and uncertain environments. Furthermore, this would increase satisfaction in ministry through improved workplace management skills.

Originality/value

Presently, very few studies empirically established the developmental needs of bishops as they entered, learned and grew into their leadership roles. Such insights would allow the formation programs for new bishops to be grounded in empirical data. Furthermore, this research study examined a largely unexplored population. This would provide a basis for a larger research agenda related to adaptive performance in judicatory leaders and their work-related psychological health. Consequently, it is posited that improved psychological health would result in better workplace learning.

Details

Journal of Work-Applied Management, vol. 16 no. 1
Type: Research Article
ISSN: 2205-2062

Keywords

Open Access
Article
Publication date: 24 May 2024

Ming Yang, Fangyuan Xing, Xiaomeng Liu, Zimeng Chen and Yali Wen

Adopting adaptive behavior has become a basic measure for farmers because the increasingly severe climate change is affecting agricultural production. Perception is a critical…

Abstract

Purpose

Adopting adaptive behavior has become a basic measure for farmers because the increasingly severe climate change is affecting agricultural production. Perception is a critical first step in adopting adaptive behaviors. Livelihood resilience represents a farmer's ability to adapt to climate change. Therefore, this article aims to explore the impact of livelihood resilience and climate change perception on the climate change adaptation behavior of farmers in the Qinling Mountains region of China.

Design/methodology/approach

In this study, 443 micro-survey data of farmers are obtained through one-on-one interviews with farmers. The Logit model and Poisson regression model are used to empirically examine the impact of farmers' livelihood resilience and climate change perception on their climate change adaptation behaviors.

Findings

It was found that 86.68% of farmers adopt adaptive behaviors to reduce the risks of facing climate change. Farmers' perception of extreme weather has a significant positive impact on their adaptive behavior under climate change. The resilience of farmers' livelihoods and their perception of rainfall have a significant positive impact on the intensity of their adaptive behavior under climate change. Climate change adaptation behaviors are also different for farmers with different levels of livelihood resilience.

Originality/value

Based on the results, policy recommendations are proposed to improve farmers' perception of climate change, enhance the sustainability of farmers' adaptive behavior to climate change, strengthen emergency management and infrastructure construction and adjust and upgrade farmers' livelihood models.

Details

Forestry Economics Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3030

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 4 November 2022

Bianca Caiazzo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo and Stefania Santini

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status…

2225

Abstract

Purpose

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status and detect eventual anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the specific anomalous event and the related risk classification for possible intervention, is hence proposed.

Design/methodology/approach

The proposed solution is a five-layer scalable and modular platform in Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection solution, designed by leveraging control charts, autoencoders (AE) long short-term memory (LSTM) and Fuzzy Inference System (FIS). The proper combination of these methods allows, not only detecting the products defects, but also recognizing their causalities.

Findings

The proposed architecture, experimentally validated on a manufacturing system involved into the production of a solar thermal high-vacuum flat panel, provides to human operators information about anomalous events, where they occur, and crucial information about their risk levels.

Practical implications

Thanks to the abnormal risk panel; human operators and business managers are able, not only of remotely visualizing the real-time status of each production parameter, but also to properly face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency situation, such as the COVID-19 pandemic.

Originality/value

The monitoring platform is one of the first attempts in leading modern manufacturing systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines, cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect causalities in complex dynamic systems by enabling the possibility of products’ waste avoidance.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 6 November 2023

Fan Zhang and Ming Cao

As climate change impacts residential life, people typically use heating or cooling appliances to deal with varying outside temperatures, bringing extra electricity demand and…

Abstract

Purpose

As climate change impacts residential life, people typically use heating or cooling appliances to deal with varying outside temperatures, bringing extra electricity demand and living costs. Water is more cost-effective than electricity and could provide the same body utility, which may be an alternative choice to smooth electricity consumption fluctuation and provide living cost incentives. Therefore, this study aims to identify the substitute effect of water on the relationship between climate change and residential electricity consumption.

Design/methodology/approach

This study identifies the substitute effect of water and potential heterogeneity using panel data from 295 cities in China over the period 2004–2019. The quantile regression and the partially linear functional coefficient model in this study could reduce the risks of model misspecification and enable detailed identification of the substitution mechanism, which is in line with reality and precisely determines the heterogeneity at different consumption levels.

Findings

The results indicate that residential water consumption can weaken the impact of cooling demand on residential electricity consumption, especially in low-income regions. Moreover, residents exhibited adaptive asymmetric behaviors. As the electricity consumption level increased, the substitute effects gradually get strong. The substitute effects gradually strengthened when residential water consumption per capita exceeds 16.44 tons as the meeting of the basic life guarantee.

Originality/value

This study identifies the substitution role of water and heterogeneous behaviors in the residential sector in China. These findings augment the existing literature and could aid policymakers, investors and residents regarding climate issues, risk management and budget management.

Details

International Journal of Climate Change Strategies and Management, vol. 16 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 30 January 2024

Christina Anderl and Guglielmo Maria Caporale

The article aims to establish whether the degree of aversion to inflation and the responsiveness to deviations from potential output have changed over time.

Abstract

Purpose

The article aims to establish whether the degree of aversion to inflation and the responsiveness to deviations from potential output have changed over time.

Design/methodology/approach

This paper assesses time variation in monetary policy rules by applying a time-varying parameter generalised methods of moments (TVP-GMM) framework.

Findings

Using monthly data until December 2022 for five inflation targeting countries (the UK, Canada, Australia, New Zealand, Sweden) and five countries with alternative monetary regimes (the US, Japan, Denmark, the Euro Area, Switzerland), we find that monetary policy has become more averse to inflation and more responsive to the output gap in both sets of countries over time. In particular, there has been a clear shift in inflation targeting countries towards a more hawkish stance on inflation since the adoption of this regime and a greater response to both inflation and the output gap in most countries after the global financial crisis, which indicates a stronger reliance on monetary rules to stabilise the economy in recent years. It also appears that inflation targeting countries pay greater attention to the exchange rate pass-through channel when setting interest rates. Finally, monetary surprises do not seem to be an important determinant of the evolution over time of the Taylor rule parameters, which suggests a high degree of monetary policy transparency in the countries under examination.

Originality/value

It provides new evidence on changes over time in monetary policy rules.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Access

Only content I have access to

Year

Last 12 months (205)

Content type

1 – 10 of 205