Search results

1 – 10 of 344
Open Access
Article
Publication date: 13 September 2023

Siyao Li, Bo Yuan, Yun Bai and Jianfeng Liu

To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following…

Abstract

Purpose

To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure, energy-saving performance of the whole metro system cannot be guaranteed.

Design/methodology/approach

A cooperative train control framework is formulated to regulate a novel train operation mode. The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train. An improved brute force (BF) algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.

Findings

Case studies on the actual metro line in Guangzhou, China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters. The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.

Originality/value

Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process, which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation. This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea, where energy-efficient train operation can be realised once train running time is determined, thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Vera Rebiazina, Elena Sharko and Svetlana Berezka

The paper aims to reveal the impact of relationship marketing (RM) practices adopted by companies in emerging markets on their market and financial performance (FP) over a…

1040

Abstract

Purpose

The paper aims to reveal the impact of relationship marketing (RM) practices adopted by companies in emerging markets on their market and financial performance (FP) over a long-term, 13-year perspective.

Design/methodology/approach

The research design combines primary empirical data from 229 Russian companies, based on the Contemporary Marketing Practices (CMP) survey, and objective FP data from official statistical databases for 2008–2020 to verify the impact of RM practices on market and FP in the long term.

Findings

The research underlines the significant impact of RM practices. It is important to notice that the effect of product development (PD) on marketing performance is mediated by competitor orientation. PD affects market and FP, whose roles vary with the return on assets (ROA).

Research limitations/implications

Research design supplements the subjective survey data with the objective FP data on the ROA to avoid common method bias.

Practical implications

Implementation of RM practices by Russian companies can increase their effectiveness of performance in the long term.

Originality/value

This research shows the positive impact of RM practices on the FP of Russian firms over the past 13 years.

Details

Journal of Economics, Finance and Administrative Science, vol. 29 no. 57
Type: Research Article
ISSN: 2077-1886

Keywords

Open Access
Article
Publication date: 2 May 2023

Tinashe Musasa and Tshepo Tlapana

This study aims to ascertain the significance of retail service quality dimensions on shopping frequency at supermarkets in Durban. This study also adopts the Retail Service…

1807

Abstract

Purpose

This study aims to ascertain the significance of retail service quality dimensions on shopping frequency at supermarkets in Durban. This study also adopts the Retail Service Quality Scale (RSQS) to South African supermarket consumers.

Design/methodology/approach

Primary data were collected from 399 consumers through mall intercepts using an adapted RSQS. Non-probability convenience sampling was utilised in selecting participants from different malls in Durban. To analyse data the SPSS software was utilised with multiple regression analysis to confirm relationships between variables of the study.

Findings

Results indicate a significant linear relationship between retail service quality and shopping frequency. Two of the three dimensions of retail service quality (atmospherics and reliability) have a positive and significant influence on the shopping frequency of consumers whereas one dimension (policy) showed no significant influence on the dependent variable.

Research limitations/implications

Further studies are recommended in ascertaining the reasons behind an insignificant relationship between policy items of service quality and the shopping frequency of consumers.

Practical implications

This study highlights the managerial implications of retail service quality on improved shopping frequency of consumers.

Originality/value

This study suggests a lesser emphasis on policy items specifically personal interaction amongst Durban consumers on their shopping frequency. This might be due to cultural differences as well as the importance of self-service and privacy in supermarkets. Furthermore, this study demonstrates the role of context in providing deviations in retail service quality measurement and conceptualisation.

Details

European Journal of Management Studies, vol. 28 no. 2
Type: Research Article
ISSN: 2183-4172

Keywords

Open Access
Article
Publication date: 7 February 2023

Roberto De Luca, Antonino Ferraro, Antonio Galli, Mosè Gallo, Vincenzo Moscato and Giancarlo Sperlì

The recent innovations of Industry 4.0 have made it possible to easily collect data related to a production environment. In this context, information about industrial equipment …

1813

Abstract

Purpose

The recent innovations of Industry 4.0 have made it possible to easily collect data related to a production environment. In this context, information about industrial equipment – gathered by proper sensors – can be profitably used for supporting predictive maintenance (PdM) through the application of data-driven analytics based on artificial intelligence (AI) techniques. Although deep learning (DL) approaches have proven to be a quite effective solutions to the problem, one of the open research challenges remains – the design of PdM methods that are computationally efficient, and most importantly, applicable in real-world internet of things (IoT) scenarios, where they are required to be executable directly on the limited devices’ hardware.

Design/methodology/approach

In this paper, the authors propose a DL approach for PdM task, which is based on a particular and very efficient architecture. The major novelty behind the proposed framework is to leverage a multi-head attention (MHA) mechanism to obtain both high results in terms of remaining useful life (RUL) estimation and low memory model storage requirements, providing the basis for a possible implementation directly on the equipment hardware.

Findings

The achieved experimental results on the NASA dataset show how the authors’ approach outperforms in terms of effectiveness and efficiency the majority of the most diffused state-of-the-art techniques.

Research limitations/implications

A comparison of the spatial and temporal complexity with a typical long-short term memory (LSTM) model and the state-of-the-art approaches was also done on the NASA dataset. Despite the authors’ approach achieving similar effectiveness results with respect to other approaches, it has a significantly smaller number of parameters, a smaller storage volume and lower training time.

Practical implications

The proposed approach aims to find a compromise between effectiveness and efficiency, which is crucial in the industrial domain in which it is important to maximize the link between performance attained and resources allocated. The overall accuracy performances are also on par with the finest methods described in the literature.

Originality/value

The proposed approach allows satisfying the requirements of modern embedded AI applications (reliability, low power consumption, etc.), finding a compromise between efficiency and effectiveness.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 2 November 2023

FengShou Liu, Guang Yang, Zhaoyang Chen, Yinhua Zhang and Qingyue Zhou

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail…

Abstract

Purpose

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail technology of high-speed railway.

Design/methodology/approach

This study reviews the evolution of high-speed rail standards in China, comparing their chemical composition, mechanical attributes and geometric specifications with EN standards. It delves into the status of rail production technology, shifts in key performance indicators and the quality characteristics of rails. The analysis further examines the interplay between wheels and rails, the implementation of grinding technology and the techniques for inspecting rail service conditions. It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem. The paper concludes with an insightful prognosis of high-speed railway technology development in China.

Findings

The rail standards of high-speed railway in China are scientific and advanced, highly operational and in line with international standards. The quality and performance of rail in China have reached the world’s advanced level. The 60N profile guarantees the operation quality of wheel–rail interaction effectively. The rail grinding technology system scientifically guarantees the long-term good service performance of the rail. The rail service state detection technology is scientific and efficient. The rail technology will take “more intelligent” and “higher speed” as the development direction to meet the future needs of high-speed railway in China.

Originality/value

The development direction of rail technology for high-speed railway in China is defined, which will promote the continuous innovation and breakthrough of rail technology.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 15 March 2024

Di Cheng, Yuqing Wen, Zhiqiang Guo, Xiaoyi Hu, Pengsong Wang and Zhikun Song

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Abstract

Purpose

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Design/methodology/approach

Using the dynamic simulation based on field test, stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested. Stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.

Findings

The results showed that stiffness and damping coefficient subjected to normal distribution, the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.

Originality/value

Firstly, based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution, and the evolution law of stiffness and damping coefficient with running mileage was proposed. Secondly stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 14 December 2023

Huijuan Zhou, Rui Wang, Dongyang Weng, Ruoyu Wang and Yaoqin Qiao

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making…

Abstract

Purpose

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making the train stranded in the interval between stations. This study aims to reduce the impact of interrupt events and improve service levels.

Design/methodology/approach

To address this issue, this paper considers the constraints of train operation safety, capacity and dynamic passenger flow demand. It proposes a method for adjusting small loops during interruption events and constructs a train operation adjustment model with the objective of minimizing the total passenger waiting time. This model enables the rapid development of train operation plans in interruption scenarios, coordinating train scheduling and line resources to minimize passenger travel time and mitigate the impact of interruptions. Regarding the proposed train operation adjustment model, an improved genetic algorithm (GA) is designed to solve it.

Findings

The model and algorithm are applied to a case study of interruption events on Beijing Subway Line 5. The results indicate that after solving the constructed model, the train departure intervals can be maintained between 1.5 min and 3 min. This ensures both the safety of train operations on the line and a good match with passengers’ travel demands, effectively reducing the total passenger waiting time and improving the service level of the urban rail transit system during interruptions. Compared to the GA algorithm, the algorithm proposed in this paper demonstrates faster convergence speed and better computational results.

Originality/value

This study explicitly outlines the adjustment method of using short-turn operation during operational interruptions, with train departure times and station stop times as decision variables. It takes into full consideration safety constraints on train operations, train capacity constraints and dynamic passenger demand. It has constructed a train schedule optimization model with the goal of minimizing the total waiting time for all passengers in the system.

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 19 March 2024

Chun Tian, Gengwei Zhai, Mengling Wu, Jiajun Zhou and Yaojie Li

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the…

Abstract

Purpose

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.

Design/methodology/approach

Based on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.

Findings

When the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.

Originality/value

Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.

Open Access
Article
Publication date: 10 October 2022

Thuy Hang Duong

This paper investigates the relationship between domestic gold prices and inflation in Vietnam based on the monthly series of the gold price index and consumer price index over…

1999

Abstract

Purpose

This paper investigates the relationship between domestic gold prices and inflation in Vietnam based on the monthly series of the gold price index and consumer price index over the period of December 2001–July 2020.

Design/methodology/approach

The co-integration between the domestic gold price and inflation is examined within the autoregressive distributed lag-error correction (ARDL bounds testing) framework. This paper also applies the vector error correction model (VECM) and impulse response function analysis to explore the causal relationship between these two variables. Moreover, since both gold and inflation series are likely to have structural changes over time, a unit root test controlling for significant breaks is employed in this paper.

Findings

Findings from the ARDL bounds testing model suggest the presence of a co-integration between the underlying variables. The VECM indicates that shocks in inflation lead to a negative response to gold prices in the long run. In the short term, only fluctuations in gold prices impact inflation, and this causality is unidirectional.

Research limitations/implications

Gold is regarded as a critical financial asset to preserve wealth from inflation pressure in the case of Vietnam. These findings propose implications for both investors and policymakers.

Originality/value

Empirical results suggest that inflation has a long-term impact on gold prices in the Vietnamese market. In the existence of a permanent inflationary shock, domestic prices of gold respond negatively to this shock; hence, gold can act as a good hedge against inflation in Vietnam.

Details

Asian Journal of Economics and Banking, vol. 7 no. 2
Type: Research Article
ISSN: 2615-9821

Keywords

Access

Only content I have access to

Year

Last 12 months (344)

Content type

1 – 10 of 344