Search results

1 – 10 of 21
Open Access
Article
Publication date: 17 May 2024

Tianyi Zhang, Haowu Luo, Ning Liu, Feiyan Min, Zhixin Liang and Gao Wang

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for…

Abstract

Purpose

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for safety. Hence, this paper aims to improve the existing method to achieve efficient, accurate and sensitive robot collision detection.

Design/methodology/approach

The external torque is estimated by momentum observers based on the robot dynamics model. Because the state of the joints is more accessible to distinguish under the action of the suppression operator proposed in this paper, the mutated external torque caused by joint reversal can be accurately attenuated. Finally, time series analysis (TSA) methods can continuously generate dynamic thresholds based on external torques.

Findings

Compared with the collision detection method based only on TSA, the invalid time of the proposed method is less during joint reversal. Although the soft-collision detection accuracy of this method is lower than that of the symmetric threshold method, it is superior in terms of detection delay and has a higher hard-collision detection accuracy.

Originality/value

Owing to the mutated external torque caused by joint reversal, which seriously affects the stability of time series models, the collision detection method based only on TSA cannot detect continuously. The consequences are disastrous if the robot collides with people or the environment during joint reversal. After multiple experimental verifications, the proposed method still exhibits detection capabilities during joint reversal and can implement real-time collision detection. Therefore, it is suitable for various engineering applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 24 May 2024

Long Li, Binyang Chen and Jiangli Yu

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point…

Abstract

Purpose

The selection of sensitive temperature measurement points is the premise of thermal error modeling and compensation. However, most of the sensitive temperature measurement point selection methods do not consider the influence of the variability of thermal sensitive points on thermal error modeling and compensation. This paper considers the variability of thermal sensitive points, and aims to propose a sensitive temperature measurement point selection method and thermal error modeling method that can reduce the influence of thermal sensitive point variability.

Design/methodology/approach

Taking the truss robot as the experimental object, the finite element method is used to construct the simulation model of the truss robot, and the temperature measurement point layout scheme is designed based on the simulation model to collect the temperature and thermal error data. After the clustering of the temperature measurement point data is completed, the improved attention mechanism is used to extract the temperature data of the key time steps of the temperature measurement points in each category for thermal error modeling.

Findings

By comparing with the thermal error modeling method of the conventional fixed sensitive temperature measurement points, it is proved that the method proposed in this paper is more flexible in the processing of sensitive temperature measurement points and more stable in prediction accuracy.

Originality/value

The Grey Attention-Long Short Term Memory (GA-LSTM) thermal error prediction model proposed in this paper can reduce the influence of the variability of thermal sensitive points on the accuracy of thermal error modeling in long-term processing, and improve the accuracy of thermal error prediction model, which has certain application value. It has guiding significance for thermal error compensation prediction.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 23 February 2024

Maria Angela Butturi, Francesco Lolli and Rita Gamberini

This study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their…

Abstract

Purpose

This study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their positioning in terms of SC performance.

Design/methodology/approach

A case study is used to demonstrate the set-up of the observatory. Twelve experts on automatic equipment for the wrapping and packaging industry were asked to select a set of performance criteria taken from the literature and evaluate their importance for the chosen industry using multi-criteria decision-making (MCDM) techniques. To handle the high number of criteria without requiring a high amount of time-consuming effort from decision-makers (DMs), five subjective, parsimonious methods for criteria weighting are applied and compared.

Findings

A benchmarking methodology is presented and discussed, aimed at DMs in the considered industry. Ten companies were ranked with regard to SC performance. The ranking solution of the companies was on average robust since the general structure of the ranking was very similar for all five weighting methodologies, though simplified-analytic hierarchy process (AHP) was the method with the greatest ability to discriminate between the criteria of importance and was considered faster to carry out and more quickly understood by the decision-makers.

Originality/value

Developing an SC observatory usually requires managing a large number of alternatives and criteria. The developed methodology uses parsimonious weighting methods, providing DMs with an easy-to-use and time-saving tool. A future research step will be to complete the methodology by defining the minimum variation required for one or more criteria to reach a specific position in the ranking through the implementation of a post-fact analysis.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 24 May 2024

Bingzi Jin and Xiaojie Xu

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly…

Abstract

Purpose

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly wholesale price index of green grams in the Chinese market. The index covers a ten-year period, from January 1, 2010, to January 3, 2020, and has significant economic implications.

Design/methodology/approach

In order to address the nonlinear patterns present in the price time series, we investigate the nonlinear auto-regressive neural network as the forecast model. This modeling technique is able to combine a variety of basic nonlinear functions to approximate more complex nonlinear characteristics. Specifically, we examine prediction performance that corresponds to several configurations across data splitting ratios, hidden neuron and delay counts, and model estimation approaches.

Findings

Our model turns out to be rather simple and yields forecasts with good stability and accuracy. Relative root mean square errors throughout training, validation and testing are specifically 4.34, 4.71 and 3.98%, respectively. The results of benchmark research show that the neural network produces statistically considerably better performance when compared to other machine learning models and classic time-series econometric methods.

Originality/value

Utilizing our findings as independent technical price forecasts would be one use. Alternatively, policy research and fresh insights into price patterns might be achieved by combining them with other (basic) prediction outputs.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 12 April 2024

Alejandro Lara-Bocanegra, Vera Pedragosa, Jerónimo García-Fernández and María Rocío Bohórquez

This study aims to analyze the precursors of high and low intrapreneurial intentions among fitness center employees, considering various variables (gender, age, organization size…

Abstract

Purpose

This study aims to analyze the precursors of high and low intrapreneurial intentions among fitness center employees, considering various variables (gender, age, organization size and job satisfaction).

Design/methodology/approach

The study involved 166 fitness center employees of the Portuguese fitness center. The study used a two-part questionnaire to gather sociodemographic data and assess variables related to intrapreneurial intentions and job satisfaction among fitness employees. The first part collected basic demographic information, while the second used validated scales to measure intrapreneurial intentions (innovation and risk-taking) and job satisfaction (intrinsic and extrinsic).

Findings

This study underscores intrapreneurship as key for the evolving global fitness sector, highlighting job satisfaction as critical for fostering intrapreneurial intentions. Age, organizational size and gender diversity are also significant, suggesting that fostering a diverse and satisfied workforce under transformational leadership can enhance fitness organizations’ adaptability and growth.

Social implications

This research supports the growth of the fitness sector by demonstrating how intrapreneurship, propelled by job satisfaction, can resolve challenges, benefiting fitness centers regardless of size, age or gender diversity.

Originality/value

The study highlights the vital role of intrapreneurs in the fitness industry, advocating a nongender-biased approach to intrapreneurship and identifying job satisfaction as key to fostering intrapreneurial intentions, beneficial for all fitness centers.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Open Access
Article
Publication date: 26 February 2024

Nadjim Mkedder, Mahmut Bakır, Yaser Aldhabyani and Fatma Zeynep Ozata

Virtual goods consumption has risen dramatically in recent years. Recognizing the benefits of virtual goods in generating revenue for online game companies, marketers strive to…

1948

Abstract

Purpose

Virtual goods consumption has risen dramatically in recent years. Recognizing the benefits of virtual goods in generating revenue for online game companies, marketers strive to understand the motives behind virtual goods purchases. We investigated the direct and indirect effects of functional, emotional, and social values through player satisfaction on purchase intention toward virtual goods among online players.

Design/methodology/approach

In total, we surveyed 332 online game players utilizing a structured questionnaire. We employed a multi-analytic approach combining partial least squares structural equation modeling (PLS-SEM) and necessary condition analysis (NCA) to examine the proposed relationships.

Findings

The findings show that all dimensions of value and player satisfaction significantly affect the intention to acquire virtual goods. However, social value does not exert a significant effect on player satisfaction. Moreover, we confirmed that player satisfaction mediates the relationships between functional value, emotional value, and purchase intention. Furthermore, NCA results indicated that all predictors in the model are necessary conditions of purchase intention for virtual goods.

Originality/value

These findings contribute to an enhanced understanding of purchase intentions among online game players from a symmetric (PLS-SEM) and asymmetric (NCA) perspective by proposing a multi-analytic approach.

Details

Central European Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2658-0845

Keywords

Open Access
Article
Publication date: 26 March 2024

Eva Posch, Elena Eckert and Benni Thiebes

Despite the widespread use and application of resilience, much uncertainty about the conceptualization and operationalization in the context of tourism destinations still exists…

Abstract

Purpose

Despite the widespread use and application of resilience, much uncertainty about the conceptualization and operationalization in the context of tourism destinations still exists. The purpose of this paper is to provide a conceptual elaboration on destination resilience and to introduce a model for an improved understanding of the concept.

Design/methodology/approach

Taking a conceptual research approach, this paper seeks to untangle the fuzziness surrounding the destination and resilience concept by providing a new interpretation that synthesizes theories and concepts from various academic disciplines. It analyses the current debate to derive theoretic baselines and conceptual elements that subsequently inform the development of a new “Destination Resilience Model”.

Findings

The contribution advances the debate by proposing three key themes for future resilience conceptualizations: (1) the value of an actor-centered and agency-based resilience perspective; (2) the importance of the dynamic nature of resilience and the (mis)use of measurement approaches; (3) the adoption of a dualistic resilience perspective distinguishing specified and general resilience. Building on these propositions, we introduce a conceptual model that innovatively links elements central to the concepts of destination and risk and combines different narratives of resilience.

Originality/value

The contribution advances the debate surrounding destination resilience by critically examining the conceptualization and operationalization of destination resilience within previous research and by subsequently proposing a “Destination Resilience Model” that picks up central element of the three new frontiers identified in the conceptually driven review. The innovative integration strengthens the comprehension of the resilience concept at destination level and supports building future capacities to manage immediate adverse impacts as well as novel and systemic risks.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Access

Only Open Access

Year

Last 6 months (21)

Content type

Earlycite article (21)
1 – 10 of 21