Search results

1 – 10 of 22
Book part
Publication date: 18 January 2024

Ramful Raviduth

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is…

Abstract

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is attributed to the construction industry. One alternative material with improved biodegradable attributes which can contribute to carbon offset is bamboo. The commercialisation of bamboo in modern infrastructures has significant potential to address few of the Sustainable Development Goals (SDGs) itemised by the United Nations, namely SDG 9 about industry, innovation and infrastructure. Other SDGs covering sustainable cities and communities, responsible consumption and production and climate action are also indirectly addressed when utilising sustainable construction materials. Being a natural material however, the full commercialisation of materials such as bamboo is constrained by a lack of durability. Besides fracture mechanisms arising from load-induced cracks and thermal modification, the durability of bamboo material is greatly impaired by biotic and abiotic factors, which equally affect its natural rate of degradation, hence fracture behaviour. In first instance, this chapter outlines the various factors leading to the durability limitations in bamboo material due to load-induced cracks and natural degradation based on recent findings in this field from the author's own work and from past literature. Secondly, part of this chapter is devoted to a new approach of processing the surge of information about the varied aspects of bamboo durability by considering the powerful technique of artificial intelligence (AI), specifically the artificial neural network (ANN) for prediction modelling. Further use of AI-enabled technologies could have an impactful outcome on the life cycle assessment of bamboo-based structures to address the growing challenges outlined by the United Nations.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Book part
Publication date: 5 June 2023

Figen Balo and Lutfu S. Sua

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to…

Abstract

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to their advantageous material features like high stiffness and strength. All the same, these fibers also have important shortcomings related to energy consumption, recyclability, initial processing expense, resulting health hazards, and sustainability. Increasing environmental awareness and new sustainable building technologies are driving the research, development, and usage of “green” building materials, especially the development of biomaterials.

In this chapter, the natural fiber evaluation approach is applied, which covers a diverse set of criteria. Consequently, the comparative assessment of diverse natural fiber types is applied through the use of an expert decision system approach. The best performing fiber choice is made by comparatively evaluating the materials related to green building. The proposed fiber can be used and applied by green building material manufacturing companies in various countries or locations as a reference when selecting the fiber with the best performance.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Book part
Publication date: 23 December 2013

Lucy Budd and Thomas Budd

To examine the role of new aeronautical technologies in improving commercial aviation’s environmental performance.

Abstract

Purpose

To examine the role of new aeronautical technologies in improving commercial aviation’s environmental performance.

Methodology/approach

Reviews the environmental improvements that may be conferred through the adoption of alternative aviation fuels and new airframe, engine and navigation technologies.

Findings

Although aeronautical technologies have evolved considerably since the earliest days of powered flight, the aviation industry is now reaching a point of diminishing returns as growing global consumer demand for air transport outstrips incremental improvements in environmental efficiency. The chapter describes some of the technological interventions that are being pursued to improve aviation’s environmental performance and discusses the extent to which these innovations will help to deliver a more sustainable aviation industry.

Details

Sustainable Aviation Futures
Type: Book
ISBN: 978-1-78190-595-1

Keywords

Content available
Book part
Publication date: 17 October 2022

Abstract

Details

Electrifying Mobility: Realising a Sustainable Future for the Car
Type: Book
ISBN: 978-1-83982-634-4

Content available
Book part
Publication date: 25 April 2022

Abstract

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Content available
Book part
Publication date: 5 August 2015

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Book part
Publication date: 17 October 2022

Peter Wells and J.-P. Skeete

The purpose of this chapter is to highlight the key differences in the production processes of battery electric vehicles (BEV) and internal combustion engine vehicles (ICEV). This

Abstract

The purpose of this chapter is to highlight the key differences in the production processes of battery electric vehicles (BEV) and internal combustion engine vehicles (ICEV). This exploration not only includes the fundamental physical architectural differences between the types of vehicles but also their entirely different supporting supply chains and underpinning business logics. Many nuanced and less-discussed considerations such as geopolitics, supporting infrastructure, and background policy implications are also covered. This chapter stems from the collection and analysis of secondary peer-reviewed data that is supplemented by verified press publications. The automotive industry moves at an incredibly fast pace, and thus understanding the sociotechnical transition to BEVs requires the additional, timely context of press publications. The overall result of this chapter is a holistic overview of the BEV’s value chain, and more importantly some much needed context for readers to better appreciate the significant implications that are involved. Society is not merely substituting one ‘full fat’ product for a ‘low calorie’ version, but rather we are adopting a new technology that solves some of our problems but comes with challenges of its own. In the coming transition to BEVs, it will be impossible to switch technologies without reformulating various policies and reconsidering how we consume transportation as a commodity or a service. By presenting how society intends to evolve its predominant road propulsion system, this chapter seeks to explain the twists and turns ahead, and offer a glimpse of a more sustainable path forward.

Details

Electrifying Mobility: Realising a Sustainable Future for the Car
Type: Book
ISBN: 978-1-83982-634-4

Keywords

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Abstract

Details

Construction Industry Advance and Change: Progress in Eight Asian Economies Since 1995
Type: Book
ISBN: 978-1-80043-504-9

1 – 10 of 22