Search results

1 – 10 of 133
Article
Publication date: 12 September 2024

Khairunnahar Suchana and Md. Mamun Molla

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials…

Abstract

Purpose

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.

Design/methodology/approach

The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (Th) left wall and a cold (Tc) right wall. Various parameters are considered, including the power law index (0.6 ≤ n ≤ 1.4), Hartmann number (0 ≤ Ha ≤ 30), Rayleigh number (104Ra ≤ 105) and fixed variables such as buoyancy ratio (Br = 0.8), Prandtl number (Pr = 6.2), Lewis number (Le = 5), fusion temperature (Θf = 0.5) and volume fraction (ϕ = 0.04).

Findings

The findings indicate a decrease in local Nusselt (Nu) and Sherwood (Sh) numbers with increasing Hartmann numbers (Ha). Additionally, for a shear-thinning fluid (n = 0.6) results in the maximum local Nu and Sh values. As the Rayleigh number (Ra) increases from 104 to 105, the structured vortex in the streamline pattern is disturbed. Furthermore, for different Ra values, an increase in n from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average Nu and a 70% to 77% decrease in average Sh.

Research limitations/implications

This research is for two-dimensioal laminar flow only.

Practical implications

PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.

Originality/value

As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2024

Abdulaziz Alsenafi, Fares Alazemi and M. Nawaz

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and…

Abstract

Purpose

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and development of models. The thermal performance of sample fluids is compared to determine which types of combination of nanoparticles are the best for an optimized enhancement in thermal performance of fluids. This article aims to: (i) investigate the impact of nanoparticles on thermal performance; and (ii) implement the Galerkin finite element method (GFEM) to thermal problems.

Design/methodology/approach

The mathematical models are developed using novel non-Fourier heat flux theory, conservation laws of computational fluid dynamics (CFD) and no-slip thermal boundary conditions. The models are approximated using thermal boundary layer approximations, and transformed models are solved numerically using GFEM. A grid-sensitivity test is performed. The accuracy, correction and stability of solutions is ensured. The numerical method adopted for the calculations is validated with published data. Quantities of engineering interest, i.e. wall shear stress, wall mass flow rate and wall heat flux, are calculated and examined versus emerging rheological parameters and thermal relaxation time.

Findings

The thermal relaxation time measures the ability of a fluid to restore its original thermal state, called thermal equilibrium and therefore, simulations have shown that the thermal relaxation time associated with a mono nanofluid has the most substantial effect on the temperature of fluid, whereas a ternary nanofluid has the smallest thermal relaxation time. A ternary nanofluid has a wider thermal boundary thickness in comparison with base and di- and mono nanofluids. The wall heat flux (in the case of the ternary nanofluids) has the most significant value compared with the wall shear stresses for the mono and hybrid nanofluids. The wall heat and mass fluxes have the highest values for the case of non-Fourier heat and mass diffusion compared to the case of Fourier heat and mass transfer.

Originality/value

An extensive literature review reveals that no study has considered thermal and concentration memory effects on transport mechanisms in fluids of cross-rheological liquid using novel theory of heat and mass [presented by Cattaneo (Cattaneo, 1958) and Christov (Christov, 2009)] so far. Moreover, the finite element method for coupled and nonlinear CFD problems has not been implemented so far. To the best of the authors’ knowledge for the first time, the dynamics of wall heat flow rate and mass flow rate under simultaneous effects of thermal and solute relaxation times, Ohmic dissipation and first-order chemical reactions are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 June 2024

Yun Su, Hui Wang, Guangju Liu, Yunyi Wang, Jianlin Liu and Miao Tian

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on…

Abstract

Purpose

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on the energy efficiency and thermal comfort.

Design/methodology/approach

A finite volume model was proposed to simulate the two-dimensional heat transfer in electrically heated footwear (EHF) under an extremely cold condition. The model domain consists of three-layer footwear materials, a heating pad, a sock material, an air gap and skin tissues. Model predictions were verified by experimental data from cold-contact exposure. Then the influencing factors on the energy efficiency and thermal comfort were investigated through parametric analysis.

Findings

The paper demonstrated that the skin temperature control (STC) mode provided superior thermal comfort compared to the heating pad temperature control (HPTC) mode. However, the energy efficiency for the HPTC mode with a heating temperature of 38 °C was 18% higher than the STC mode. The energy efficiency of EHF while reaching the state of thermal comfort was strongly determined by the arrangement and connection of heating elements, heating temperature, thickness and thermal conductivity of footwear materials.

Originality/value

The findings obtained in this paper can be used to engineer the EHF that provides optimal thermal comfort and energy efficiency in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 July 2024

Abhishek Sahu and Shubhankar Bhowmick

Transient response of continuous composite material (CCM) fin made of high thermally conductive composite material is presented. The continuously varying effective properties of…

Abstract

Purpose

Transient response of continuous composite material (CCM) fin made of high thermally conductive composite material is presented. The continuously varying effective properties of composite material such as thermal conductivity, heat capacity and density have been modelled using the Mori-Tanaka homogenization theory and rule of mixture. Additionally, temperature dependency of thermal conductivity, heat generation (composite materials) and convection coefficient (fluid properties) have also been incorporated. Different base boundary conditions are addressed such as oscillating heat flow, oscillating temperature, step-changing heat flow and step-changing temperature. At the other boundary, the fin is assumed to have a convective tip.

Design/methodology/approach

Lattice Boltzmann method is implemented using an in-house source code for obtaining the numerical solution of typical non-linear heat balance equation of the aforementioned problem under various transient base boundary conditions.

Findings

The effects of various thermal parameters such as material diffusivity ratio and conductivity ratio, area ratio and Biot number on transient response of fin and temperature distribution of fins are studied and interpreted. The heat transfer rate and time for attainment of steady state temperature of metal matrix composite (MMC) fin are found to be proportionally dependent on their diffusivity ratio. Additionally for higher values of area ratio and biot number, MMC fins are reported to dissipate the heat more efficiently in comparision to homogeneous fins in terms of time required to attain the steady state and surface temperature.

Practical implications

Response of transient fin associated with advanced class of material can facilitates the practicing engineers for designing high-performance and/or miniaturized thermal management devices as used in electronic packaging industries.

Originality/value

Studies of composite fin consisting of laminating second layer of material over the first layer have been reported previously, however transient response of CCM fin fabricated by continuously varying the volume fraction of two materials along the fin length has not been reported till date. Such material finds its application in thermal management and electronic packaging industries. Results are plotted in form of a graph for different application-wise material combinations that have not been reported earlier, and it can be treated as design data.

Article
Publication date: 28 June 2024

Hillal M. Elshehabey

The purpose of this paper is to present numerical simulations for magnetohydrodynamics natural convection of a nanofluid flow inside a cavity with an H-shaped obstacle based on…

Abstract

Purpose

The purpose of this paper is to present numerical simulations for magnetohydrodynamics natural convection of a nanofluid flow inside a cavity with an H-shaped obstacle based on combining artificial neural network (ANN) with the finite element method (FEM), and predict the heat transfer rate and system entropy.

Design/methodology/approach

The enclosure is assumed to be inclined. Changing the inclination angle results in a different obstacle shape, which affects the buoyancy force. Hence, different configurations of the contours of the fluid flow, isotherms and the entropy of the system are obtained. The outer walls of the cavity as well as the central part of the obstacle are kept adiabatic. The left vertical portion of the hindrance is cooled, whereas the right vertical part of the obstacle is a heated wall. Using dimensionless variables allows obtaining a dimensionless version of the governing system of equations that is solved via the consistency FEM. The coupled problem of pressure and velocity is overcome via the Increment Pressure Correction Scheme, which is known for its accuracy and stability for similar simple problems. A numerical computation is performed across a broad range of the governing parameters. A total of 304 data sets were used in the development of an ANN model. That data set was conducted from the numerical simulations. The data set underwent optimization, with 70% sets used for training the model, 15% for validation and another 15% for the testing phase. The training of the network model used the Levenberg–Marquardt training algorithm.

Findings

From the numerical simulations, it is concluded that the H-shaped obstacle boosts heat transfer rate in comparison with the I-shaped case. Also, raising the value of the inclination angle improves the entropy of the system presented by the Bejen number. Furthermore, strength heat transfer rate is obtained via decreasing the Hartmann number while this decrease decays the values of the Bejen number for both positive and negative amounts of the nonlinear Boussinesq parameter. Slower velocity and a better heat transfer rate characterize nanofluid compared with pure fluid. Leveraging the capabilities of the ANN, the developed model adeptly forecasts the values of both the average Nusselt and Bejen numbers with a high degree of accuracy.

Originality/value

A novel fusion of FEM and ANN has been tailored to forecast the heat transfer rate and system entropy of MHD natural convective flow within an inclined cavity containing an H-shaped obstacle, amid various physical influences.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2024

Antar Tahiri, Haroun Ragueb, Mustafa Moussaoui, Kacem Mansouri, Djemaa Guerraiche and Khelifa Guerraiche

This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under…

Abstract

Purpose

This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating.

Design/methodology/approach

The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (Ha = 0 ∼ 40) and Brinkman (Br = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as ϕ.

Findings

The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether Br equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and η (a dimensionless parameter emerging from the formulation) obtained for ϕ = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region.

Originality/value

The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

42

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 May 2024

Mohamed M. Hendy and Magdy A. Ezzat

Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account…

Abstract

Purpose

Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account for the memory effect. A new mathematical model of the GN-II theory incorporates a fractional order of heat transport to address this issue.

Design/methodology/approach

The employment of the matrix exponential method, which forms the basis of the state-space approach in contemporary theory, is central to this strategy. The resulting formulation, together with the Laplace transform techniques, is applied to a variety of problems. Solutions to a thermal shock problem and to a problem of a layer media both without heat sources are obtained. Also, a problem with the distribution of heat sources is considered. The numerical technique is used to achieve the Laplace transform inversion.

Findings

According to the numerical results and its graphs, the influences of the fractional order parameters, figure-of-merit factor, thermoelectric power and Peltier coefficient on the behavior of the field quantities are investigated in the new theory.

Originality/value

The new modeling of thermoelectric MHD has advanced significantly as a result of this work, providing a more thorough and precise tool for forecasting the behavior of these materials under a range of thermal and magnetic conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 6 months (133)

Content type

Article (133)
1 – 10 of 133