Search results

1 – 10 of 28
Article
Publication date: 27 September 2021

Sagar Juneja, Rajendra Pratap and Rajnish Sharma

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G…

Abstract

Purpose

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G network is operating, and hence antenna design for mmW 5G network is going to be significantly different. The purpose of this paper is to bring forth the unique challenges and opportunities of planar antenna design for mmW 5G network.

Design/methodology/approach

A lot of notable contemporary work has been investigated for this study and reported in this paper. A comparison of 4G and 5G technologies has been carried out to understand the difference between the air interface of two technologies that governs the antenna design. Important research gaps found after collating the work already done in the field have been bullet pointed for the use by many researchers working in this direction.

Findings

Several antenna design considerations have been laid out by the authors of this work, and it has been claimed that mmW 5G antenna design must satisfy these design considerations. In addition, prominent research gaps have been identified and thoroughly discussed.

Originality/value

As research in the field of mmW antenna design for 5G applications is still evolving, a lot of work is currently being done in this area. This study can prove to be important in understanding different challenges, opportunities and current state-of-art in the field of mmW planar antenna design for 5G cellular communication.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 January 2023

Dhanalakshmi K.M., Kavya G. and Rajkumar S.

This paper aims to propose a single element, dual feed, polarisation diversity antenna. The proposed antenna operates from 2.9 to 10.6 GHz for covering the entire ultra-wideband…

Abstract

Purpose

This paper aims to propose a single element, dual feed, polarisation diversity antenna. The proposed antenna operates from 2.9 to 10.6 GHz for covering the entire ultra-wideband (UWB) frequency range. The antenna is designed for usage in massive multiple input multiple output (MIMO) and closed packaging applications.

Design/methodology/approach

The size of the antenna is 24 × 24 × 1.6 mm3. The radiating element of the antenna is derived from the Sierpinski–Knopp (SK) fractal geometry for miniaturization of the antenna size. The antenna has a single reflecting stub placed between the two orthogonal feeds, to improve isolation.

Findings

The proposed antenna system exhibits S11 < −10 dB, S21 < −15 dB and stable radiation characteristics in the entire operating region. It also offers an envelope correlation coefficient < 0.01, a diversity gain > 9.9 dB and a capacity loss < 0.4 bps/Hz. The simulated and measured outputs were compared and results were found to be in similarity.

Originality/value

The proposed UWB-MIMO antenna has significant size reduction through usage of SK fractal geometry for radiating element. The antenna uses a single radiating element with dual feed. The stub is between the antenna elements which provide a compact and miniaturized MIMO solution for high density packaging applications. The UWB-MIMO antenna provides an isolation better than −20 dB in the entire UWB operating band.

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 August 2023

Hong Luo and Huiying Qiao

A new round of technological revolution is impacting various aspects of society. However, the importance of technology adoption in fostering firm innovation is underexplored…

Abstract

Purpose

A new round of technological revolution is impacting various aspects of society. However, the importance of technology adoption in fostering firm innovation is underexplored. Therefore, this study aims to investigate whether robot adoption affects technological innovation and how human capital plays a role in this relationship in the era of circular economy.

Design/methodology/approach

Based on the robot adoption data from the International Federation of Robotics (IFR) and panel data of China's listed manufacturing firms from 2011 to 2020, this study uses regression models to test the impact of industrial robots on firm innovation and the mediating role of human capital.

Findings

The results demonstrate that the adoption of industrial robots can significantly promote high-quality innovation. Specifically, a one-unit increase in the number of robots per 100 employees is associated with a 13.52% increase in the number of invention patent applications in the following year. The mechanism tests show that industrial robots drive firm innovation by accumulating more highly educated workers and allocating more workers to R&D jobs. The findings are more significant for firms in industries with low market concentration, in labor-intensive industries and in regions with a shortage of high-end talent.

Research limitations/implications

Due to data limitations, the sample of this study is limited to listed manufacturing firms, so the impact of industrial robots on promoting innovation may be underestimated. In addition, this study cannot observe the dynamic process of human capital management by firms after adopting robots.

Practical implications

The Chinese government should continue to promote the intelligent upgrading of the manufacturing industry and facilitate the promotion of robots in innovation. This implication can also be applied to developing countries that hope to learn from China's experience. In addition, this study emphasizes the role of human capital in the innovation-promoting process of robots. This highlights the importance of firms to strengthen employee education and training.

Social implications

The adoption of industrial robots has profoundly influenced the production and lifestyle of human society. This study finds that the adoption of robots contributes to firm innovation, which helps people gain a deeper understanding of the positive impacts brought about by industrial intelligence.

Originality/value

By exploring the impact of industrial robots on firm innovation, this study offers crucial evidence at the firm level to comprehend the economic implications of robot adoption based on circular economy and human perspectives. Moreover, this study reveals that human capital is an important factor in how industrial robots affect firm innovation, providing an important complement to previous studies.

Details

Management Decision, vol. 62 no. 9
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 12 October 2023

Sasireka Perumalsamy, Kavya G. and Rajkumar S.

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna…

Abstract

Purpose

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna operates from 3.1 to 10.6 GHz. The antenna finds its usage in on-body wearable device applications.

Design/methodology/approach

The antenna system measures 63.80 × 29.80 × 0.7 mm. The antenna radiating element is designed by using a modified dumbbell-shaped structure. Jean cloth material is used as substrate. The isolation improvement is achieved through spacing between two elements.

Findings

The proposed antenna has a very low mutual coupling of S21 < −20 dB and impedance matching of S11 < −10 dB. The radiation characteristics are stable in the antenna operating region. It provides as ECC < 0.01, diversity gain >9.9 dB. The antenna offers low average specific absorption rate (SAR) of 0.169 W/kg. The simulated and measured results are found to be in reasonable match.

Originality/value

The MIMO antenna is proposed for on-body communication, hence, a very thin jean cloth material is used as substrate. This negates the necessity of additional material usage in antenna design and the result range indicates good diversity performance and with a low SAR of 0.169 W/kg for on-body performance. This makes it a suitable candidate for textile antenna application.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 July 2024

Huijie Jin, Suihan Sui and Changyin Gao

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage…

Abstract

Purpose

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage over the use of quartz disk, but research into the torsional effect of quartz pillar is rare. This paper aims to investigate a novel type of torque sensor based on piezoelectric torsional effect.

Design/methodology/approach

Based on the theory of anisotropic elasticity and the Maxwell electromagnetism, the torsion stress and distribution of surface charge of a rectangular quartz pillar are calculated. Using finite element analysis, the polarized electric field of the piezoelectric pillar is solved. According to the theoretical calculation of torsional effect of piezoelectric quartz pillar, detection electrodes are mounted on the surface of the quartz pillar and a new type of torque sensor is designed.

Findings

The calibration experimental results show that the bound charges are proportional to the torque applied, and the torque sensor has fully reached the dynamometer standard.

Originality/value

This paper shows that the torsional effect of the developed piezoelectric quartz pillar can be used to create a new type of piezoelectric torque sensor.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2023

Tal Laor

This research aims to examine the ways and the extent to which social media platforms undermine the spiral of silence by facilitating the expression of diverse voices and opinions.

Abstract

Purpose

This research aims to examine the ways and the extent to which social media platforms undermine the spiral of silence by facilitating the expression of diverse voices and opinions.

Design/methodology/approach

Semi-structured interviews were conducted with members of closed groups focused on non-consensus topics.

Findings

Facebook closed group members perceive the media as isolating and portraying their issues negatively. However, these groups offer support, inclusion and non-judgmental opinion-sharing space. Consequently, members feel more comfortable discussing and sharing the topic outside the group, indicating a slight trend of challenging and undermining the spiral of silence through social networks.

Research limitations/implications

The study faces challenges in comparing diverse groups due to unique circumstances, complex needs and societal attitudes. Each group stands alone, potentially yielding slightly different findings.

Practical implications

Social media challenges and undermines the spiral of silence, as these opinions are shared with the wider society and can even find their way back to mainstream media outlets. Thus, social media platforms play a significant role in disrupting the spiral of silence and facilitating the expression of diverse opinions that may have been previously suppressed.

Social implications

This research emphasizes the critical role of social media in shaping public opinion and its interaction with the broader media landscape, illustrating a circular process where social media disrupts the spiral of silence by facilitating the expression of previously suppressed diverse opinions, which can then potentially influence mainstream media.

Originality/value

This study adds value by exploring how social media platforms can challenge and undermine the spiral of silence, enabling the expression of diverse, marginalized and underrepresented opinions in society. It highlights the role of social media in shaping public opinion and discourse, challenging the dominance of traditional media. Its originality emanates from its revelations concerning the legitimization of conversational topics, which may consequently affect media agendas.

Details

Online Information Review, vol. 48 no. 4
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 7 May 2024

Khalid Mehmood, Katrien Verleye, Arne De Keyser and Bart Lariviere

The widespread integration of artificial intelligence (AI)-enabled personalization has sparked a need for a deeper understanding of its transformative potential. To address this…

Abstract

Purpose

The widespread integration of artificial intelligence (AI)-enabled personalization has sparked a need for a deeper understanding of its transformative potential. To address this, this study aims to investigate the mental models held by consumers from diverse cultures regarding the impact and role of AI-enabled personalization in their lives (i.e. individual well-being) and in society (i.e. societal well-being).

Design/methodology/approach

This paper uses the theories-in-use approach, collecting qualitative data via the critical incident technique. This data encompasses 487 narratives from 176 consumers in two culturally distinct countries, Belgium and Pakistan. Additionally, it includes insights from a focus group of six experts in the field.

Findings

This research reveals that consumers view AI-enabled personalization as a dual-edged sword: it may both extend and restrict the self and also contribute to an affluent society as well as an ailing society. The particular aspects of the extended/restricted self and the affluent/ailing society that emerge differ across respondents from different cultural contexts.

Originality/value

This cross-cultural research contributes to the personalization and well-being literature by providing detailed insight into the transformative potential of AI-enabled personalization while also having important managerial and policy implications.

Access

Year

Last 6 months (28)

Content type

Article (28)
1 – 10 of 28