Search results

1 – 10 of over 1000
Article
Publication date: 18 September 2023

Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang and Ruping Zhang

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal…

Abstract

Purpose

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM).

Design/methodology/approach

This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets.

Findings

The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise.

Originality/value

This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2136

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 10 March 2023

Jingyi Li and Shiwei Chao

Binary classification on imbalanced data is a challenge; due to the imbalance of the classes, the minority class is easily masked by the majority class. However, most existing…

Abstract

Purpose

Binary classification on imbalanced data is a challenge; due to the imbalance of the classes, the minority class is easily masked by the majority class. However, most existing classifiers are better at identifying the majority class, thereby ignoring the minority class, which leads to classifier degradation. To address this, this paper proposes a twin-support vector machines for binary classification on imbalanced data.

Design/methodology/approach

In the proposed method, the authors construct two support vector machines to focus on majority classes and minority classes, respectively. In order to promote the learning ability of the two support vector machines, a new kernel is derived for them.

Findings

(1) A novel twin-support vector machine is proposed for binary classification on imbalanced data, and new kernels are derived. (2) For imbalanced data, the complexity of data distribution has negative effects on classification results; however, advanced classification results can be gained and desired boundaries are learned by using optimizing kernels. (3) Classifiers based on twin architectures have more advantages than those based on single architecture for binary classification on imbalanced data.

Originality/value

For imbalanced data, the complexity of data distribution has negative effects on classification results; however, advanced classification results can be gained and desired boundaries are learned through using optimizing kernels.

Details

Data Technologies and Applications, vol. 57 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Book part
Publication date: 25 October 2023

Md Aminul Islam and Md Abu Sufian

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The…

Abstract

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The study thoroughly investigated with advanced tools to scrutinize key performance indicators integral to the functioning of smart cities, thereby enhancing leadership and decision-making strategies. Our work involves the implementation of various machine learning models such as Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, and Artificial Neural Networks (ANN), to the data. Notably, the Support Vector Machine and Bernoulli Naive Bayes models exhibit robust performance with an accuracy rate of 70% precision score. In particular, the study underscores the employment of an ANN model on our existing dataset, optimized using the Adam optimizer. Although the model yields an overall accuracy of 61% and a precision score of 58%, implying correct predictions for the positive class 58% of the time, a comprehensive performance assessment using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics was necessary. This evaluation results in a score of 0.475 at a threshold of 0.5, indicating that there's room for model enhancement. These models and their performance metrics serve as a key cog in our data analytics pipeline, providing decision-makers and city leaders with actionable insights that can steer urban service management decisions. Through real-time data availability and intuitive visualization dashboards, these leaders can promptly comprehend the current state of their services, pinpoint areas requiring improvement, and make informed decisions to bolster these services. This research illuminates the potential for data analytics, machine learning, and AI to significantly upgrade urban service management in smart cities, fostering sustainable and livable communities. Moreover, our findings contribute valuable knowledge to other cities aiming to adopt similar strategies, thus aiding the continued development of smart cities globally.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

Article
Publication date: 28 February 2023

Meltem Aksoy, Seda Yanık and Mehmet Fatih Amasyali

When a large number of project proposals are evaluated to allocate available funds, grouping them based on their similarities is beneficial. Current approaches to group proposals…

Abstract

Purpose

When a large number of project proposals are evaluated to allocate available funds, grouping them based on their similarities is beneficial. Current approaches to group proposals are primarily based on manual matching of similar topics, discipline areas and keywords declared by project applicants. When the number of proposals increases, this task becomes complex and requires excessive time. This paper aims to demonstrate how to effectively use the rich information in the titles and abstracts of Turkish project proposals to group them automatically.

Design/methodology/approach

This study proposes a model that effectively groups Turkish project proposals by combining word embedding, clustering and classification techniques. The proposed model uses FastText, BERT and term frequency/inverse document frequency (TF/IDF) word-embedding techniques to extract terms from the titles and abstracts of project proposals in Turkish. The extracted terms were grouped using both the clustering and classification techniques. Natural groups contained within the corpus were discovered using k-means, k-means++, k-medoids and agglomerative clustering algorithms. Additionally, this study employs classification approaches to predict the target class for each document in the corpus. To classify project proposals, various classifiers, including k-nearest neighbors (KNN), support vector machines (SVM), artificial neural networks (ANN), classification and regression trees (CART) and random forest (RF), are used. Empirical experiments were conducted to validate the effectiveness of the proposed method by using real data from the Istanbul Development Agency.

Findings

The results show that the generated word embeddings can effectively represent proposal texts as vectors, and can be used as inputs for clustering or classification algorithms. Using clustering algorithms, the document corpus is divided into five groups. In addition, the results demonstrate that the proposals can easily be categorized into predefined categories using classification algorithms. SVM-Linear achieved the highest prediction accuracy (89.2%) with the FastText word embedding method. A comparison of manual grouping with automatic classification and clustering results revealed that both classification and clustering techniques have a high success rate.

Research limitations/implications

The proposed model automatically benefits from the rich information in project proposals and significantly reduces numerous time-consuming tasks that managers must perform manually. Thus, it eliminates the drawbacks of the current manual methods and yields significantly more accurate results. In the future, additional experiments should be conducted to validate the proposed method using data from other funding organizations.

Originality/value

This study presents the application of word embedding methods to effectively use the rich information in the titles and abstracts of Turkish project proposals. Existing research studies focus on the automatic grouping of proposals; traditional frequency-based word embedding methods are used for feature extraction methods to represent project proposals. Unlike previous research, this study employs two outperforming neural network-based textual feature extraction techniques to obtain terms representing the proposals: BERT as a contextual word embedding method and FastText as a static word embedding method. Moreover, to the best of our knowledge, there has been no research conducted on the grouping of project proposals in Turkish.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 November 2023

Muhammad Asim, Muhammad Yar Khan and Khuram Shafi

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the…

Abstract

Purpose

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the news sentiment because in the current digital era, investors take their decision making on the basis of current trends projected by news and media platforms.

Design/methodology/approach

For empirical modeling, the authors use machine learning models to investigate the presence of herding behavior in UK stock market for the period starting from 2006 to 2021. The authors use support vector regression, single layer neural network and multilayer neural network models to predict the herding behavior in the stock market of the UK. The authors estimate the herding coefficients using all the models and compare the findings with the linear regression model.

Findings

The results show a strong evidence of herding behavior in the stock market of the UK during different time regimes. Furthermore, when the authors incorporate the economic uncertainty news sentiment in the model, the results show a significant improvement. The results of support vector regression, single layer perceptron and multilayer perceptron model show the evidence of herding behavior in UK stock market during global financial crises of 2007–08 and COVID’19 period. In addition, the authors compare the findings with the linear regression which provides no evidence of herding behavior in all the regimes except COVID’19. The results also provide deep insights for both individual investors and policy makers to construct efficient portfolios and avoid market crashes, respectively.

Originality/value

In the existing literature of herding behavior, news sentiment regarding economic uncertainty has not been used before. However, in the present era this parameter is quite critical in context of market anomalies hence and needs to be investigated. In addition, the literature exhibits varying results about the existence of herding behavior when different methodologies are used. In this context, the use of machine learning models is quite rare in the herding literature. The machine learning models are quite robust and provide accurate results. Therefore, this research study uses three different models, i.e. single layer perceptron model, multilayer perceptron model and support vector regression model to investigate the herding behavior in the stock market of the UK. A comparative analysis is also presented among the results of all the models. The study sheds light on the importance of economic uncertainty news sentiment to predict the herding behavior.

Details

Review of Behavioral Finance, vol. 16 no. 3
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 21 March 2024

Thamaraiselvan Natarajan, P. Pragha, Krantiraditya Dhalmahapatra and Deepak Ramanan Veera Raghavan

The metaverse, which is now revolutionizing how brands strategize their business needs, necessitates understanding individual opinions. Sentiment analysis deciphers emotions and…

Abstract

Purpose

The metaverse, which is now revolutionizing how brands strategize their business needs, necessitates understanding individual opinions. Sentiment analysis deciphers emotions and uncovers a deeper understanding of user opinions and trends within this digital realm. Further, sentiments signify the underlying factor that triggers one’s intent to use technology like the metaverse. Positive sentiments often correlate with positive user experiences, while negative sentiments may signify issues or frustrations. Brands may consider these sentiments and implement them on their metaverse platforms for a seamless user experience.

Design/methodology/approach

The current study adopts machine learning sentiment analysis techniques using Support Vector Machine, Doc2Vec, RNN, and CNN to explore the sentiment of individuals toward metaverse in a user-generated context. The topics were discovered using the topic modeling method, and sentiment analysis was performed subsequently.

Findings

The results revealed that the users had a positive notion about the experience and orientation of the metaverse while having a negative attitude towards the economy, data, and cyber security. The accuracy of each model has been analyzed, and it has been concluded that CNN provides better accuracy on an average of 89% compared to the other models.

Research limitations/implications

Analyzing sentiment can reveal how the general public perceives the metaverse. Positive sentiment may suggest enthusiasm and readiness for adoption, while negative sentiment might indicate skepticism or concerns. Given the positive user notions about the metaverse’s experience and orientation, developers should continue to focus on creating innovative and immersive virtual environments. At the same time, users' concerns about data, cybersecurity and the economy are critical. The negative attitude toward the metaverse’s economy suggests a need for innovation in economic models within the metaverse. Also, developers and platform operators should prioritize robust data security measures. Implementing strong encryption and two-factor authentication and educating users about cybersecurity best practices can address these concerns and enhance user trust.

Social implications

In terms of societal dynamics, the metaverse could revolutionize communication and relationships by altering traditional notions of proximity and the presence of its users. Further, virtual economies might emerge, with virtual assets having real-world value, presenting both opportunities and challenges for industries and regulators.

Originality/value

The current study contributes to research as it is the first of its kind to explore the sentiments of individuals toward the metaverse using deep learning techniques and evaluate the accuracy of these models.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 14 July 2022

Karlo Puh and Marina Bagić Babac

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism…

6293

Abstract

Purpose

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism importance and popularity, the amount of significant data grows, too. On daily basis, millions of people write their opinions, suggestions and views about accommodation, services, and much more on various websites. Well-processed and filtered data can provide a lot of useful information that can be used for making tourists' experiences much better and help us decide when selecting a hotel or a restaurant. Thus, the purpose of this study is to explore machine and deep learning models for predicting sentiment and rating from tourist reviews.

Design/methodology/approach

This paper used machine learning models such as Naïve Bayes, support vector machines (SVM), convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) for extracting sentiment and ratings from tourist reviews. These models were trained to classify reviews into positive, negative, or neutral sentiment, and into one to five grades or stars. Data used for training the models were gathered from TripAdvisor, the world's largest travel platform. The models based on multinomial Naïve Bayes (MNB) and SVM were trained using the term frequency-inverse document frequency (TF-IDF) for word representations while deep learning models were trained using global vectors (GloVe) for word representation. The results from testing these models are presented, compared and discussed.

Findings

The performance of machine and learning models achieved high accuracy in predicting positive, negative, or neutral sentiments and ratings from tourist reviews. The optimal model architecture for both classification tasks was a deep learning model based on BiLSTM. The study’s results confirmed that deep learning models are more efficient and accurate than machine learning algorithms.

Practical implications

The proposed models allow for forecasting the number of tourist arrivals and expenditure, gaining insights into the tourists' profiles, improving overall customer experience, and upgrading marketing strategies. Different service sectors can use the implemented models to get insights into customer satisfaction with the products and services as well as to predict the opinions given a particular context.

Originality/value

This study developed and compared different machine learning models for classifying customer reviews as positive, negative, or neutral, as well as predicting ratings with one to five stars based on a TripAdvisor hotel reviews dataset that contains 20,491 unique hotel reviews.

Details

Journal of Hospitality and Tourism Insights, vol. 6 no. 3
Type: Research Article
ISSN: 2514-9792

Keywords

Article
Publication date: 3 December 2022

Vahide Bulut

Surface curvature is needed to analyze the range data of real objects and is widely applied in object recognition and segmentation, robotics, and computer vision. Therefore, it is…

Abstract

Purpose

Surface curvature is needed to analyze the range data of real objects and is widely applied in object recognition and segmentation, robotics, and computer vision. Therefore, it is not easy to estimate the curvature of the scanned data. In recent years, machine learning classification methods have gained importance in various fields such as finance, health, engineering, etc. The purpose of this study is to classify surface points based on principal curvatures to find the best method for determining surface point types.

Design/methodology/approach

A feature selection method is presented to find the best feature vector that achieves the highest accuracy. For this reason, ten different feature selections are used and six sample datasets of different sizes are classified using these feature vectors.

Findings

The author examined the surface examples based on the feature vector using the machine learning classification methods. Also, the author compared the results for each experiment.

Originality/value

To the best of the author's knowledge, this is the first study to examine surface points according to principal curvatures using machine learning classification methods.

Details

Data Technologies and Applications, vol. 57 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 6 October 2023

Vahide Bulut

Feature extraction from 3D datasets is a current problem. Machine learning is an important tool for classification of complex 3D datasets. Machine learning classification…

Abstract

Purpose

Feature extraction from 3D datasets is a current problem. Machine learning is an important tool for classification of complex 3D datasets. Machine learning classification techniques are widely used in various fields, such as text classification, pattern recognition, medical disease analysis, etc. The aim of this study is to apply the most popular classification and regression methods to determine the best classification and regression method based on the geodesics.

Design/methodology/approach

The feature vector is determined by the unit normal vector and the unit principal vector at each point of the 3D surface along with the point coordinates themselves. Moreover, different examples are compared according to the classification methods in terms of accuracy and the regression algorithms in terms of R-squared value.

Findings

Several surface examples are analyzed for the feature vector using classification (31 methods) and regression (23 methods) machine learning algorithms. In addition, two ensemble methods XGBoost and LightGBM are used for classification and regression. Also, the scores for each surface example are compared.

Originality/value

To the best of the author’s knowledge, this is the first study to analyze datasets based on geodesics using machine learning algorithms for classification and regression.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000