Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 26 February 2024

Helleke Heikkinen

An increasing number of last mile deliveries (LMDs) pose many sustainability challenges that retailers and logistics service providers (LSPs) can address. Using cognitive frames…

Abstract

Purpose

An increasing number of last mile deliveries (LMDs) pose many sustainability challenges that retailers and logistics service providers (LSPs) can address. Using cognitive frames (CFs) as a lens, this study explored how retail and LSP managers make sense of sustainable LMDs.

Design/methodology/approach

The methodological approach used is a multiple embedded case study. The data were obtained from interviews with retailers and LSPs, supplemented with secondary data for triangulation.

Findings

The findings present the operational aspects of LMDs that managers associate with sustainability and indicate that retail and LSP managers frame sustainability primarily as emission reduction. Managers indicate an externalization of responsibility and a compartmentalization of the supply chain, in which social sustainability is not associated with the last mile. Most managers indicate hierarchical CFs regarding sustainability, in which sustainability is an important topic but is subordinate to economic interests.

Practical implications

Collaboration between retailers, LSPs and other stakeholders is viewed as challenging but could alleviate some of the sustainability shortcomings and aid in the paradoxical framing and inclusion of social issues.

Originality/value

A conceptualization of managerial CFs for sustainable LMDs, together with empirical frame indicators and three propositions, is presented, providing novel insights into how paradoxical CFs could make LMDs more sustainable. This approach illuminates the possibilities for how to untangle the operational manifestations of managerial framing and adds to the empirical exploration of CFs in supply chain management.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

37

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 13 March 2024

Keanu Telles

The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some…

Abstract

Purpose

The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some countries are rich and others poor.

Design/methodology/approach

The author approaches the discussion using a theoretical and historical reconstruction based on published and unpublished materials.

Findings

The systematic, continuous and profound attempt to answer the Smithian social coordination problem shaped North's journey from being a young serious Marxist to becoming one of the founders of New Institutional Economics. In the process, he was converted in the early 1950s into a rigid neoclassical economist, being one of the leaders in promoting New Economic History. The success of the cliometric revolution exposed the frailties of the movement itself, namely, the limitations of neoclassical economic theory to explain economic growth and social change. Incorporating transaction costs, the institutional framework in which property rights and contracts are measured, defined and enforced assumes a prominent role in explaining economic performance.

Originality/value

In the early 1970s, North adopted a naive theory of institutions and property rights still grounded in neoclassical assumptions. Institutional and organizational analysis is modeled as a social maximizing efficient equilibrium outcome. However, the increasing tension between the neoclassical theoretical apparatus and its failure to account for contrasting political and institutional structures, diverging economic paths and social change propelled the modification of its assumptions and progressive conceptual innovation. In the later 1970s and early 1980s, North abandoned the efficiency view and gradually became more critical of the objective rationality postulate. In this intellectual movement, North's avant-garde research program contributed significantly to the creation of New Institutional Economics.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Article
Publication date: 24 January 2023

Yali Wang, Jian Zuo, Min Pan, Bocun Tu, Rui-Dong Chang, Shicheng Liu, Feng Xiong and Na Dong

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid…

Abstract

Purpose

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid development of machine learning technology and the massive cost data from historical projects, this paper aims to propose a novel cost prediction model based on historical data with improved performance when only limited information about the new project is available.

Design/methodology/approach

The proposed approach combines regression analysis (RA) and artificial neural network (ANN) to build a novel hybrid cost prediction model with the former as front-end prediction and the latter as back-end correction. Firstly, the main factors influencing the cost of building projects are identified through literature research and subsequently screened by principal component analysis (PCA). Secondly the optimal RA model is determined through multi-model comparison and used for front-end prediction. Finally, ANN is applied to construct the error correction model. The hybrid RA-ANN model was trained and tested with cost data from 128 completed construction projects in China.

Findings

The results show that the hybrid cost prediction model has the advantages of both RA and ANN whose prediction accuracy is higher than that of RA and ANN only with the information such as total floor area, height and number of floors.

Originality/value

(1) The most critical influencing factors of the buildings’ cost are found out by means of PCA on the historical data. (2) A novel hybrid RA-ANN model is proposed which proved to have the advantages of both RA and ANN with higher accuracy. (3) The comparison among different models has been carried out which is helpful to future model selection.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 December 2022

Zhenmin Yuan, Yuan Chang, Yunfeng Chen, Yaowu Wang, Wei Huang and Chen Chen

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and…

Abstract

Purpose

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and improper process design. This study aims to identify the pathways for improving lifting performance to advance lean construction of prefabricated buildings.

Design/methodology/approach

This study developed a methodological framework that integrates the discrete event simulation method, the elimination, combination, rearrangement and simplification (ECRS) technique and intelligent optimization tool. Two schemes of precast wall lifting, namely, the enterprise's business as usual (BAU) and enterprise-leading (EL) schemes, were set to benchmark lifting performance. Furthermore, a best-practice (BP) scheme was modeled from the perspective of lifting activity ECRS and resource allocation for performance optimization.

Findings

A real project was selected to test the effect of the methodological framework. The results showed that compared with the EL scheme, the BP scheme reduced the total lifting time (TLT) by 6.3% and mitigated the TLT uncertainty (the gap between the maximum and minimum time values) by 20.6%. Under the BP scheme, increasing the resource inputs produces an insignificant effect in reducing TLT, i.e. increasing the number of component operators in the caulking subprocess from one to two only shortened the TLT by 3.6%, and no further time reduction was achieved as more component operators were added.

Originality/value

To solve non-lean problems associated with prefabricated building construction, this study provides a methodological framework that can separate a typical precast wall lifting process into fine-level activities. Besides, it also identifies the pathways (including the learning effect mitigation, labor and machinery resource adjustment and activities’ improvement) to reducing TLT and its uncertainty.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 March 2023

Flora Bougiatioti, Eleni Alexandrou and Miltiadis Katsaros

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal…

Abstract

Purpose

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal Insulation Code of 1981. The article focuses on existing, typical residences built after 1920, which are found mostly in suburban areas and settlements all around Greece. The purpose of the research is to evaluate the effect of simple bioclimatic interventions focused on the improvement of their diurnal, inter-seasonal and annual thermal performance.

Design/methodology/approach

The applied strategies include application of thermal insulation in the building shell and openings, passive solar systems for the heating period and shading and natural ventilation for the summer period. The effect of the strategies is analysed with the use of building energy analysis. The simulation method was selected because it provides the possibility of parametric analysis and comparisons for different proposals in different orientations.

Findings

The results show that the increased thermal mass of the construction is the most decisive parameter of the thermal behaviour throughout the year.

Research limitations/implications

The typical residences under investigation are often found in urban and/or suburban surroundings. These mostly refer to free-standing buildings situated, which, in many cases, do not have the disadvantages and limitations that the geometrical characteristics of densely built urban locations impose on incident solar radiation (e.g. overshadowing during the winter) and air circulation (e.g. reduce natural ventilation during the summer). Nevertheless, even in these cases, the surrounding built environment may also have relevant negative effects, which were not taken under consideration and could be included in further, future research that will include the effect of various orientations, as well as of neighbouring buildings.

Practical implications

Existing residences built prior to the first Thermal Insulation Code (1981) form an important part of the building stock. Consequently their energy upgrade could contribute to significant conventional energy savings for heating and cooling, along with the inter-seasonal improvement of interior thermal comfort conditions.

Social implications

The proposed interventions can improve thermal comfort conditions and lead to a reduction of energy consumption for heating and cooling, which is an important step against energy poverty and the on-going energy crisis.

Originality/value

The proposed interventions only involve the building envelope and are simple with relatively low cost.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Nor Salwani Hashim, Fatimah De’nan and Nurfarhah Naaim

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural…

Abstract

Purpose

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural framing system that incorporates lightweight load-bearing walls and slabs, and to compare the weight of materials used in cold-formed and hot-finished steel structural systems for affordable housing.

Design/methodology/approach

Four types of models consisting of 243 members were simulated. Model 1 is a cold-formed steel structural framing system, while Model 2 is a hot-finished steel structural framing system. Both Models 1 and 2 use lightweight wall panels and lightweight composite slabs. Models 3 and 4 are made with brick walls and precast reinforced concrete systems, respectively. These structures use different wall and slab materials, namely, brick walls and precast reinforced concrete. The analysis includes bending behavior, buckling resistance, shear resistance and torsional rotation analysis.

Findings

This study found that using thinner steel sections can increase the deflection value. Meanwhile, increasing member length and the ratio of slenderness will decrease buckling resistance. As the applied load increases, buckling deformation also increases. Furthermore, decreasing shear area causes a reduction in shear resistance. Thicker sections and the use of lightweight materials can decrease the torsional rotation value.

Originality/value

The weight comparison of the steel structures shows that Model 1, which is a cold-formed steel structure with lightweight wall panels and lightweight composite slabs, is the most suitable model due to its lightweight and affordability for housing. This model can also be used as a reference for the optimal design of modular structural framing using cold-formed steel materials in the field of civil engineering and as a promotional tool.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 January 2024

Xing Chen and Ashley D. Lloyd

Blockchain is a disruptive technology that has matured to deliver robust, global, IT systems, yet adoption lags predictions. The authors explore barriers to adoption in the…

Abstract

Purpose

Blockchain is a disruptive technology that has matured to deliver robust, global, IT systems, yet adoption lags predictions. The authors explore barriers to adoption in the context of a global challenge with multiple stakeholders: integration of carbon markets. Going beyond the dominant economic-rationalistic paradigm of information system (IS) innovation adoption, the authors reduce pro-innovation bias and broaden inter-organizational scope by using technological frames theory to capture the cognitive framing of the challenges perceived within the world’s largest carbon emitter: China.

Design/methodology/approach

Semi-structured interviews with 15 key experts representing three communities in China’s carbon markets: IT experts in carbon markets; carbon market experts with conceptual knowledge of blockchain and carbon market experts with practical blockchain experience.

Findings

Perceived technical challenges were found to be the least significant in explaining adoption. Significant challenges in five areas: social, political legal and policy (PLP), data, organizational and managerial (OM) and economic, with PLP and OM given most weight. Mapping to frames developed to encompass these challenges: nature of technology, strategic use of technology and technology readiness resolved frame incongruence that, in the case explored, did not lead to rejection of blockchain, but a decision to defer investment, increase the scope of analysis and delay the adoption decision.

Originality/value

Increases scope and resolution of IS adoption research. Technological frames theory moves from predominant economic-rational models to a social cognitive perspective. Broadens understanding of blockchain adoption in a context combining the world’s most carbon emissions with ownership of most blockchain patents, detailing socio-technical challenges and delivering practical guidance for policymakers and practitioners.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of over 2000