Search results

1 – 10 of over 7000
Open Access
Article
Publication date: 31 July 2023

Daniel Šandor and Marina Bagić Babac

Sarcasm is a linguistic expression that usually carries the opposite meaning of what is being said by words, thus making it difficult for machines to discover the actual meaning…

4533

Abstract

Purpose

Sarcasm is a linguistic expression that usually carries the opposite meaning of what is being said by words, thus making it difficult for machines to discover the actual meaning. It is mainly distinguished by the inflection with which it is spoken, with an undercurrent of irony, and is largely dependent on context, which makes it a difficult task for computational analysis. Moreover, sarcasm expresses negative sentiments using positive words, allowing it to easily confuse sentiment analysis models. This paper aims to demonstrate the task of sarcasm detection using the approach of machine and deep learning.

Design/methodology/approach

For the purpose of sarcasm detection, machine and deep learning models were used on a data set consisting of 1.3 million social media comments, including both sarcastic and non-sarcastic comments. The data set was pre-processed using natural language processing methods, and additional features were extracted and analysed. Several machine learning models, including logistic regression, ridge regression, linear support vector and support vector machines, along with two deep learning models based on bidirectional long short-term memory and one bidirectional encoder representations from transformers (BERT)-based model, were implemented, evaluated and compared.

Findings

The performance of machine and deep learning models was compared in the task of sarcasm detection, and possible ways of improvement were discussed. Deep learning models showed more promise, performance-wise, for this type of task. Specifically, a state-of-the-art model in natural language processing, namely, BERT-based model, outperformed other machine and deep learning models.

Originality/value

This study compared the performance of the various machine and deep learning models in the task of sarcasm detection using the data set of 1.3 million comments from social media.

Details

Information Discovery and Delivery, vol. 52 no. 2
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 26 August 2024

S. Punitha and K. Devaki

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student…

Abstract

Purpose

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student performance is essential for educators to provide targeted support and guidance to students. By analyzing various factors like attendance, study habits, grades, and participation, teachers can gain insights into each student’s academic progress. This information helps them tailor their teaching methods to meet the individual needs of students, ensuring a more personalized and effective learning experience. By identifying patterns and trends in student performance, educators can intervene early to address any challenges and help students acrhieve their full potential. However, the complexity of human behavior and learning patterns makes it difficult to accurately forecast how a student will perform. Additionally, the availability and quality of data can vary, impacting the accuracy of predictions. Despite these obstacles, continuous improvement in data collection methods and the development of more robust predictive models can help address these challenges and enhance the accuracy and effectiveness of student performance predictions. However, the scalability of the existing models to different educational settings and student populations can be a hurdle. Ensuring that the models are adaptable and effective across diverse environments is crucial for their widespread use and impact. To implement a student’s performance-based learning recommendation scheme for predicting the student’s capabilities and suggesting better materials like papers, books, videos, and hyperlinks according to their needs. It enhances the performance of higher education.

Design/methodology/approach

Thus, a predictive approach for student achievement is presented using deep learning. At the beginning, the data is accumulated from the standard database. Next, the collected data undergoes a stage where features are carefully selected using the Modified Red Deer Algorithm (MRDA). After that, the selected features are given to the Deep Ensemble Networks (DEnsNet), in which techniques such as Gated Recurrent Unit (GRU), Deep Conditional Random Field (DCRF), and Residual Long Short-Term Memory (Res-LSTM) are utilized for predicting the student performance. In this case, the parameters within the DEnsNet network are finely tuned by the MRDA algorithm. Finally, the results from the DEnsNet network are obtained using a superior method that delivers the final prediction outcome. Following that, the Adaptive Generative Adversarial Network (AGAN) is introduced for recommender systems, with these parameters optimally selected using the MRDA algorithm. Lastly, the method for predicting student performance is evaluated numerically and compared to traditional methods to demonstrate the effectiveness of the proposed approach.

Findings

The accuracy of the developed model is 7.66%, 9.91%, 5.3%, and 3.53% more than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-1, and 7.18%, 7.54%, 5.43% and 3% enhanced than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-2.

Originality/value

The developed model recommends the appropriate learning materials within a short period to improve student’s learning ability.

Article
Publication date: 18 August 2023

Gaurav Sarin, Pradeep Kumar and M. Mukund

Text classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological…

Abstract

Purpose

Text classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological computing, deep learning has become more popular among academicians and professionals to perform mining and analytical operations. In this work, the authors study the research carried out in field of text classification using deep learning techniques to identify gaps and opportunities for doing research.

Design/methodology/approach

The authors adopted bibliometric-based approach in conjunction with visualization techniques to uncover new insights and findings. The authors collected data of two decades from Scopus global database to perform this study. The authors discuss business applications of deep learning techniques for text classification.

Findings

The study provides overview of various publication sources in field of text classification and deep learning together. The study also presents list of prominent authors and their countries working in this field. The authors also presented list of most cited articles based on citations and country of research. Various visualization techniques such as word cloud, network diagram and thematic map were used to identify collaboration network.

Originality/value

The study performed in this paper helped to understand research gaps that is original contribution to body of literature. To best of the authors' knowledge, in-depth study in the field of text classification and deep learning has not been performed in detail. The study provides high value to scholars and professionals by providing them opportunities of research in this area.

Details

Benchmarking: An International Journal, vol. 31 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 11 June 2024

Xing Zhang, Yongtao Cai, Fangyu Liu and Fuli Zhou

This paper aims to propose a solution for dissolving the “privacy paradox” in social networks, and explore the feasibility of adopting a synergistic mechanism of “deep-learning…

Abstract

Purpose

This paper aims to propose a solution for dissolving the “privacy paradox” in social networks, and explore the feasibility of adopting a synergistic mechanism of “deep-learning algorithms” and “differential privacy algorithms” to dissolve this issue.

Design/methodology/approach

To validate our viewpoint, this study constructs a game model with two algorithms as the core strategies.

Findings

The “deep-learning algorithms” offer a “profit guarantee” to both network users and operators. On the other hand, the “differential privacy algorithms” provide a “security guarantee” to both network users and operators. By combining these two approaches, the synergistic mechanism achieves a balance between “privacy security” and “data value”.

Practical implications

The findings of this paper suggest that algorithm practitioners should accelerate the innovation of algorithmic mechanisms, network operators should take responsibility for users’ privacy protection, and users should develop a correct understanding of privacy. This will provide a feasible approach to achieve the balance between “privacy security” and “data value”.

Originality/value

These findings offer some insights into users’ privacy protection and personal data sharing.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 April 2024

Shola Usharani, R. Gayathri, Uday Surya Deveswar Reddy Kovvuri, Maddukuri Nivas, Abdul Quadir Md, Kong Fah Tee and Arun Kumar Sivaraman

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for…

Abstract

Purpose

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for inspectors. Image-based automatic inspection of cracks can be very effective when compared to human eye inspection. With the advancement in deep learning techniques, by utilizing these methods the authors can create automation of work in a particular sector of various industries.

Design/methodology/approach

In this study, an upgraded convolutional neural network-based crack detection method has been proposed. The dataset consists of 3,886 images which include cracked and non-cracked images. Further, these data have been split into training and validation data. To inspect the cracks more accurately, data augmentation was performed on the dataset, and regularization techniques have been utilized to reduce the overfitting problems. In this work, VGG19, Xception and Inception V3, along with Resnet50 V2 CNN architectures to train the data.

Findings

A comparison between the trained models has been performed and from the obtained results, Xception performs better than other algorithms with 99.54% test accuracy. The results show detecting cracked regions and firm non-cracked regions is very efficient by the Xception algorithm.

Originality/value

The proposed method can be way better back to an automatic inspection of cracks in buildings with different design patterns such as decorated historical monuments.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 January 2024

Jing Tang, Yida Guo and Yilin Han

Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for…

Abstract

Purpose

Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.

Design/methodology/approach

The proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.

Findings

The ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.

Originality/value

The proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.

Details

Data Technologies and Applications, vol. 58 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 31 July 2024

Yongqing Ma, Yifeng Zheng, Wenjie Zhang, Baoya Wei, Ziqiong Lin, Weiqiang Liu and Zhehan Li

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its…

26

Abstract

Purpose

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its training process requires a large amount of data to improve model performance. However, labeled data is expensive and not readily available.

Design/methodology/approach

To address the above problem, researchers have integrated semi-supervised and deep learning, using a limited number of labeled data and many unlabeled data to train models. In this paper, Generative Adversarial Networks (GANs) are analyzed as an entry point. Firstly, we discuss the current research on GANs in image super-resolution applications, including supervised, unsupervised, and semi-supervised learning approaches. Secondly, based on semi-supervised learning, different optimization methods are introduced as an example of image classification. Eventually, experimental comparisons and analyses of existing semi-supervised optimization methods based on GANs will be performed.

Findings

Following the analysis of the selected studies, we summarize the problems that existed during the research process and propose future research directions.

Originality/value

This paper reviews and analyzes research on generative adversarial networks for image super-resolution and classification from various learning approaches. The comparative analysis of experimental results on current semi-supervised GAN optimizations is performed to provide a reference for further research.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 May 2024

Yang Liu, Maomao Chi and Qiong Sun

This study aims to detect consumer sarcasm through inconsistencies in sentiment features between text and images of hotel reviews.

Abstract

Purpose

This study aims to detect consumer sarcasm through inconsistencies in sentiment features between text and images of hotel reviews.

Design/methodology/approach

This paper proposes a model for sarcasm detection based on multimodal deep learning using reviews of three hotel brands collected from two travel platforms, which can identify emotional inconsistencies within a modality and across modalities. Text-image interaction information is explored using graph neural networks (GNN) to detect essential clues in sarcasm sentiment.

Findings

The research results show that the multimodal deep learning model outperforms other baseline models, which can help to understand hotel service evaluation and provide hotel managers with decision-making opinions.

Originality/value

This research can help hoteliers in two ways: detecting service quality and formulating strategies. By selecting reference hotel brands, hoteliers can better assess their level of service quality (optimal resource allocation ensues); therefore, sarcasm detection research is not only beneficial for hotel managers seeking to improve service quality. The multimodal deep learning method introduced in the present study can be replicated in other industries to help travel platforms optimize their products and services.

研究目的

本研究通过分析酒店评论文本和图像之间情感特征的不一致性来检测消费者的讽刺。

研究方法

本文提出了一种基于多模态深度学习的讽刺检测模型, 使用从两个旅行平台收集的三个酒店品牌的评论, 该模型能够识别模态内部和模态之间的情感不一致性。利用图神经网络(GNN)探索文本-图像交互信息, 以检测讽刺情感中的关键线索。

研究发现

研究结果显示, 多模态深度学习模型优于其他基线模型, 这有助于理解酒店服务评估, 并为酒店经理提供决策建议。

研究创新

该研究可以在两方面帮助酒店业者:检测服务质量和制定策略。通过选择参考酒店品牌, 酒店业者可以更好地评估其服务质量水平(随之而来的是最佳资源分配), 因此, 讽刺检测研究不仅有助于寻求提高服务质量的酒店经理。本研究介绍的多模态深度学习方法可以在其他行业复制, 帮助旅行平台优化其产品和服务。

Details

Journal of Hospitality and Tourism Technology, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 7000