Search results

1 – 10 of over 4000
To view the access options for this content please click here
Article
Publication date: 13 February 2017

Zaheer Khan and Tim Vorley

The purpose of this paper is to examine the role of big data text analytics as an enabler of knowledge management (KM). The paper argues that big data text analytics

Downloads
4726

Abstract

Purpose

The purpose of this paper is to examine the role of big data text analytics as an enabler of knowledge management (KM). The paper argues that big data text analytics represents an important means to visualise and analyse data, especially unstructured data, which have the potential to improve KM within organisations.

Design/methodology/approach

The study uses text analytics to review 196 articles published in two of the leading KM journals – Journal of Knowledge Management and Journal of Knowledge Management Research & Practice – in 2013 and 2014. The text analytics approach is used to process, extract and analyse the 196 papers to identify trends in terms of keywords, topics and keyword/topic clusters to show the utility of big data text analytics.

Findings

The findings show how big data text analytics can have a key enabler role in KM. Drawing on the 196 articles analysed, the paper shows the power of big data-oriented text analytics tools in supporting KM through the visualisation of data. In this way, the authors highlight the nature and quality of the knowledge generated through this method for efficient KM in developing a competitive advantage.

Research limitations/implications

The research has important implications concerning the role of big data text analytics in KM, and specifically the nature and quality of knowledge produced using text analytics. The authors use text analytics to exemplify the value of big data in the context of KM and highlight how future studies could develop and extend these findings in different contexts.

Practical implications

Results contribute to understanding the role of big data text analytics as a means to enhance the effectiveness of KM. The paper provides important insights that can be applied to different business functions, from supply chain management to marketing management to support KM, through the use of big data text analytics.

Originality/value

The study demonstrates the practical application of the big data tools for data visualisation, and, with it, improving KM.

Details

Journal of Knowledge Management, vol. 21 no. 1
Type: Research Article
ISSN: 1367-3270

Keywords

To view the access options for this content please click here
Book part
Publication date: 15 December 2017

Helen Clegg and Hugo Evans

Abstract

Details

The Emerald Handbook of Modern Information Management
Type: Book
ISBN: 978-1-78714-525-2

Keywords

To view the access options for this content please click here

Abstract

Details

The Electronic Library, vol. 35 no. 6
Type: Research Article
ISSN: 0264-0473

To view the access options for this content please click here
Book part
Publication date: 7 May 2019

Nikolaos Dimisianos

This chapter examines the ways social media, analytics, and disruptive technologies are combined and leveraged by political campaigns to increase the probability of…

Abstract

This chapter examines the ways social media, analytics, and disruptive technologies are combined and leveraged by political campaigns to increase the probability of victory through micro-targeting, voter engagement, and public relations. More specifically, the importance of community detection, social influence, natural language processing and text analytics, machine learning, and predictive analytics is assessed and reviewed in relation to political campaigns. In this context, data processing is examined through the lens of the General Data Protection Regulation (GDPR) effective as of May 25, 2018. It is concluded that while data processing during political campaigns does not violate the GDPR, electoral campaigns engage in surveillance, thereby violating Articles 12 and 19, in respect to private life, and freedom of expression accordingly, as stated in the 1948 Universal Declaration of Human Rights.

Details

Politics and Technology in the Post-Truth Era
Type: Book
ISBN: 978-1-78756-984-3

Keywords

To view the access options for this content please click here
Article
Publication date: 20 October 2021

Sumeer Gul, Shohar Bano and Taseen Shah

Data mining along with its varied technologies like numerical mining, textual mining, multimedia mining, web mining, sentiment analysis and big data mining proves itself…

Abstract

Purpose

Data mining along with its varied technologies like numerical mining, textual mining, multimedia mining, web mining, sentiment analysis and big data mining proves itself as an emerging field and manifests itself in the form of different techniques such as information mining; big data mining; big data mining and Internet of Things (IoT); and educational data mining. This paper aims to discuss how these technologies and techniques are used to derive information and, eventually, knowledge from data.

Design/methodology/approach

An extensive review of literature on data mining and its allied techniques was carried to ascertain the emerging procedures and techniques in the domain of data mining. Clarivate Analytic’s Web of Science and Sciverse Scopus were explored to discover the extent of literature published on Data Mining and its varied facets. Literature was searched against various keywords such as data mining; information mining; big data; big data and IoT; and educational data mining. Further, the works citing the literature on data mining were also explored to visualize a broad gamut of emerging techniques about this growing field.

Findings

The study validates that knowledge discovery in databases has rendered data mining as an emerging field; the data present in these databases paves the way for data mining techniques and analytics. This paper provides a unique view about the usage of data, and logical patterns derived from it, how new procedures, algorithms and mining techniques are being continuously upgraded for their multipurpose use for the betterment of human life and experiences.

Practical implications

The paper highlights different aspects of data mining, its different technological approaches, and how these emerging data technologies are used to derive logical insights from data and make data more meaningful.

Originality/value

The paper tries to highlight the current trends and facets of data mining.

Details

Digital Library Perspectives, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5816

Keywords

To view the access options for this content please click here
Article
Publication date: 13 November 2017

Wu He, Xin Tian, Ran Tao, Weidong Zhang, Gongjun Yan and Vasudeva Akula

Online customer reviews could shed light into their experience, opinions, feelings, and concerns. To gain valuable knowledge about customers, it becomes increasingly…

Downloads
2963

Abstract

Purpose

Online customer reviews could shed light into their experience, opinions, feelings, and concerns. To gain valuable knowledge about customers, it becomes increasingly important for businesses to collect, monitor, analyze, summarize, and visualize online customer reviews posted on social media platforms such as online forums. However, analyzing social media data is challenging due to the vast increase of social media data. The purpose of this paper is to present an approach of using natural language preprocessing, text mining and sentiment analysis techniques to analyze online customer reviews related to various hotels through a case study.

Design/methodology/approach

This paper presents a tested approach of using natural language preprocessing, text mining, and sentiment analysis techniques to analyze online textual content. The value of the proposed approach was demonstrated through a case study using online hotel reviews.

Findings

The study found that the overall review star rating correlates pretty well with the sentiment scores for both the title and the full content of the online customer review. The case study also revealed that both extremely satisfied and extremely dissatisfied hotel customers share a common interest in the five categories: food, location, rooms, service, and staff.

Originality/value

This study analyzed the online reviews from English-speaking hotel customers in China to understand their preferred hotel attributes, main concerns or demands. This study also provides a feasible approach and a case study as an example to help enterprises more effectively apply social media analytics in practice.

Details

Online Information Review, vol. 41 no. 7
Type: Research Article
ISSN: 1468-4527

Keywords

To view the access options for this content please click here
Book part
Publication date: 4 January 2019

William D. Brink and M. Dale Stoel

The purpose of this study is to identify the specific skills and abilities within the broad category of data analytics that current business professionals believe are most…

Abstract

The purpose of this study is to identify the specific skills and abilities within the broad category of data analytics that current business professionals believe are most important for accounting graduates. Data analytics knowledge is clearly important, but this category is broad. Therefore, this study identifies the specific skills and abilities that are most important for accounting graduates so that faculty can create classroom materials most beneficial for the future accounting graduates. In 2013, the Association to Advance Collegiate Schools of Business developed new standards for accounting programs, including standard A7, related to information technology and analytics. The intent of the standard clearly focuses on increasing the level of technology and analytics studied within the accounting curriculum. However, the specific details and methods for achieving the intent of A7 remain an open question. This chapter uses prior research focused on business analytics education to identify potential analytic skills, tools, techniques, and management issues of concern within the accounting profession. A survey of 342 accounting professionals identifies suggested areas of analytic competencies for accounting graduates. Specifically, the authors find preferences for skills related to data interpretation and communication over any individual technical skills or statistical knowledge. These skills suggest a role for accountants as intermediaries who may need to translate analytic activities into business language. Post hoc, the authors examine the survey results for differences based on respondent characteristics. Interestingly, female respondents report lower beliefs about the importance of analytic skills. The authors also find some differences when examining different demographics within the respondents.

Details

Advances in Accounting Education: Teaching and Curriculum Innovations
Type: Book
ISBN: 978-1-78756-540-1

Keywords

To view the access options for this content please click here
Article
Publication date: 17 March 2020

Minwoo Lee, Yanjun (Maggie) Cai, Agnes DeFranco and Jongseo Lee

Electronic word of mouth in the form of user-generated content (UGC) in social media plays an important role in influencing customer decision-making and enhancing service…

Downloads
1029

Abstract

Purpose

Electronic word of mouth in the form of user-generated content (UGC) in social media plays an important role in influencing customer decision-making and enhancing service providers’ brand images, sales and service innovations. While few research studies have explored real content generated by hotel guests in social media, business analytics techniques are still not widely seen in the literature and how such techniques can be deployed to benefit hoteliers has not been fully explored. Thus, this study aims to explore the significant factors that affect hotel guest satisfaction via UGC and business analytics and also to showcase the use of business analytics tools for both the hospitality industry and the academic world.

Design/methodology/approach

This study uses big data and business analytics techniques. Big data and business analytics enable hoteliers to develop effective and efficient strategies improving products and services for guest satisfaction. Therefore, this study analyzes 200,431 hotel reviews on Tripadvisor.com through business analytics to explore and assess the significant factors affecting guest satisfaction.

Findings

The findings show that service, room and value evaluations are the top-three factors affecting overall guests’ satisfaction. While brand type and negative emotions are negatively associated with guests’ satisfaction, all other factors considered were positively associated with guests’ satisfaction.

Originality/value

The current study serves as a great starting point to further explore the relationship between specific evaluation factors and guests’ overall satisfaction by analyzing user-generated online reviews through business analytics so as to assist hoteliers to resolve performance-related problems by analyzing service gaps that exist in these influential factors.

研究目的

以消费者评论为主体的社交网络口碑营销对于影响消费者决策和提高服务提供商的品牌形象、销量、和服务创新起到重要作用。然而, 很少研究探索社交媒体上的真正酒店客人评论。因此, 商务分析技术在文献中还是很少使用的, 这种技术应该更多得到科研上的应用以给酒店从业人员给与启示。因此, 本论文旨在探究影响酒店顾客满意度的因素, 通过消费者评论和商务分析, 以展示商务分析技术是如何为酒店业和科研界来使用的。

研究设计/方法/途径

本论文使用大数据和商务分析技术来进行数据分析。大数据和商务分析能够为酒店从业人员开发有效战略以提高产品和服务质量, 最后达到顾客满意。因此, 本论文分析了Tripadvisor.com的200, 431酒店评论数, 通过商务分析技术, 以探索和审视影响顾客满意度的重要因素。

研究结果

研究结果显示服务、客房、和价值比成为影响顾客满意度的前三项因素。品牌类型和负面情绪是影响顾客满意度的负面因素。其他因素成为影响顾客满意度的正面因素。

研究原创性/价值

本论文是利用消费者评论的商务分析来探究影响顾客满意度与具体衡量因素之间关系的起点范例, 以此, 帮助酒店从业商来解决服务中的欠缺因素, 提高绩效。

Details

Journal of Hospitality and Tourism Technology, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9880

Keywords

To view the access options for this content please click here
Article
Publication date: 31 May 2019

Thuy Duong Oesterreich and Frank Teuteberg

In recent years, the rise of big data has led to an obvious shift in the competence profile expected from the controller and management accountant (MA). Among others…

Downloads
3157

Abstract

Purpose

In recent years, the rise of big data has led to an obvious shift in the competence profile expected from the controller and management accountant (MA). Among others, business analytics competences and information technology skills are considered a “must have” capability for the controlling and MA profession. As it still remains unclear if these requirements can be fulfilled by today’s employees, the purpose of this study is to examine the supply of business analytics competences in the current competence profiles of controlling professionals in an attempt to answer the question whether or not a skills gap exists.

Design/methodology/approach

Based on a set of 2,331 member profiles of German controlling professionals extracted from the business social network XING, a text analytics approach is conducted to discover patterns out of the semi-structured data. In doing so, the second purpose of this study is to encourage researchers and practitioners to integrate and advance big data analytics as a method of inquiry into their research process.

Findings

Apart from the mediating role of gender, company size and other variables, the results indicate that the current competence profiles of the controller do not comply with the recent requirements towards business analytics competences. However, the answer to the question whether a skills gap exist must be made cautiously by taking into account the specific organizational context such as level of IT adoption or the degree of job specialization.

Research limitations/implications

Guided by the resource-based view of the firm, organizational theory and social cognitive theory, an explanatory model is developed that helps to explain the apparent skills gap, and thus, to enhance the understanding towards the rationales behind the observed findings. One major limitation to be mentioned is that the data sample integrated into this study is restricted to member profiles of German controlling professionals from foremost large companies.

Originality/value

The insights provided in this study extend the ongoing debate in accounting literature and business media on the skills changes of the controlling and MA profession in the big data era. The originality of this study lies in its explicit attempt to integrate recent advances in data analytics to explore the self-reported competence supplies of controlling professionals based on a comprehensive set of semi-structured data. A theoretically founded explanatory model is proposed that integrates empirically validated findings from extant research across various disciplines.

To view the access options for this content please click here
Article
Publication date: 20 May 2021

Ahmet Yucel, Musa Caglar, Hamidreza Ahady Dolatsara, Benjamin George and Ali Dag

Machine learning algorithms are useful to effectively analyse, and therefore automatically classify online reviews. The purpose of this paper is to demonstrate a novel text

Abstract

Purpose

Machine learning algorithms are useful to effectively analyse, and therefore automatically classify online reviews. The purpose of this paper is to demonstrate a novel text-mining framework and its potential for use in the classification of unstructured hotel reviews.

Design/methodology/approach

Well-known data mining methods (i.e. boosted decision trees (BDT), classification and regression trees (C&RT) and random forests (RF)) in conjunction with incorporating five-fold cross-validation are used to predict the star rating of the hotel reviews. To achieve this goal, extracted features are used to create a composite variable (CV) to deploy into machine learning algorithms as the main feature (variable) during the learning process.

Findings

BDT outperformed the other alternatives in the exact accuracy rate (EAR) and multi-class accuracy rate (MCAR) by reaching the accuracy rates of 0.66 and 0.899, respectively. Moreover, phrases such as “clean”, “friendly”, “nice”, “perfect” and “love” are shown to be associated with four and five stars, whereas, phrases such as “horrible”, “never”, “terrible” and “worst” are shown to be associated with one and two-star hotels, as it would be the intuitive expectation.

Originality/value

To the best of the knowledge, there is no study in the existent literature, which synthesizes the knowledge obtained from individual features and uses them to create a single composite variable that is powerful enough to predict the star rates of the user-generated reviews. This study believes that the proposed method also provides policymakers with a unique window in the thoughts and opinions of individual users, which may be used to augment the current decision-making process.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of over 4000