Search results

1 – 10 of 802
Article
Publication date: 19 March 2018

Alberto Lopez and Rachel Rodriguez

The purpose of this study is to understand and explain the process by which child consumers form relationships with brands. Specifically, the authors attempt to understand how…

2680

Abstract

Purpose

The purpose of this study is to understand and explain the process by which child consumers form relationships with brands. Specifically, the authors attempt to understand how child consumers conceptualize brands, why and how they decide to engage in relationships with brands and why they decide to breakup with brands though sometimes reconcile with them.

Design/methodology/approach

A mixed methodology was followed in this research. On the basis of an ethnographic approach, ten in-depth interviews were conducted among 8-12-year-old girls. Subsequently, a survey was completed by 122 children (boys and girls) to quantitatively examine the hypotheses formulated after the qualitative phase.

Findings

Findings from both the qualitative and quantitative studies highlight and confirm that children conceptualize brands according to visual branding components, signs and promotional activities. Furthermore, children make moral evaluations of brand behaviors and judge them as “good” or “bad”. More importantly, the authors propose two typologies: one for the reasons children decide to engage in a positive relationship and another for why children engage in a negative relationship with a brand. Additionally, the authors found that children report having an active or passive relationship role according to the characteristics of the brand relationship. Moreover, despite their young age, children report having broken up relationships with several brands; the reasons are categorized into positive and negative breakups. Finally, the authors found that positive breakups lead to more probable brand relationship reconciliation than negative breakups.

Originality/value

Despite a vast body of literature in the child consumer behavior field, there is scarce research regarding brand relationship phenomena. To the best of the authors’ knowledge, this is the first empirical research conducted with child consumers, addressing brand relationship formation, dissolution and reconciliation.

Details

Journal of Consumer Marketing, vol. 35 no. 2
Type: Research Article
ISSN: 0736-3761

Keywords

Article
Publication date: 19 June 2019

Cheng Zhong and Alexandra Komrakova

This paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in…

210

Abstract

Purpose

This paper aims to demonstrate the capabilities of a diffuse interface free energy lattice Boltzmann method to perform direct numerical simulations of liquid–liquid dispersions in a well-controlled turbulent environment. The goal of this research study is to develop numerical techniques that can visualize and quantify drop interaction with the turbulent vortices. The obtained information will be used for the development of sub-models of drop breakup for multi-scale simulations.

Design/methodology/approach

A pure binary liquid system is considered that is subject to fully developed statistically stationary turbulent flow field in a cubic fully periodic box with the edge size of 300 lattice units. Three turbulent flow fields with varying energy input are examined and their coherent structures are visualized using a normalized Q-criterion. The evolution of the liquid–liquid interface is tracked as a function of time. The detailed explanation of the numerical method is provided with a highlight on a choice of the numerical parameters.

Findings

Drop breakup mechanisms differ depending on energy input. Drops break due to interaction with the vortices. Quantification of turbulent structures shows that the size of vortices increases with the decrease of energy input. Drop interacts simultaneously with multiple vortices of the size comparable to or smaller than the drop size. Vortices of the size smaller than the drop size disturb drop interface and pinch off the satellites. Vortices of the size comparable to the drop size tend to elongate the drop and tear it apart producing daughter drops and satellites. Addition of the second phase enhances turbulent dissipation at the high wavenumbers. To obtain physically realistic two-phase energy spectra, the multiple-relaxation-time collision operator should be used.

Originality/value

Detailed information of drop breakup in the turbulent flow field is crucial for the development of drop breakup sub-models that are necessary for multi-scale numerical simulations. The improvement of numerical methods that can provide these data and produce reliable results is important. This work made one step towards a better understanding of how drops interact with the turbulent vortices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

J I Ramos

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods…

Abstract

Purpose

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions.

Design/methodology/approach

Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained.

Findings

It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation.

Originality/value

This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1989

Bruce P. Bickner

In the 1960s and early 1970s, big was beautiful. Corporate America saw a trend toward conglomerates. An investment in a diversified company was considered a good bet. If one of…

Abstract

In the 1960s and early 1970s, big was beautiful. Corporate America saw a trend toward conglomerates. An investment in a diversified company was considered a good bet. If one of the conglomerate's businesses took a downturn, perhaps the others could carry it. A more recent trend has been for companies to focus on one industry. Investors are more likely to seek out companies that have a “pure play.”

Details

Journal of Business Strategy, vol. 10 no. 5
Type: Research Article
ISSN: 0275-6668

Article
Publication date: 11 July 2018

Xin Liu, Yuming Xing and Liang Zhao

The purpose of this study is to investigate structure parameters that influence the mixing process of droplets-gas in underwater depth-adjustable launcher cooling chamber and help…

Abstract

Purpose

The purpose of this study is to investigate structure parameters that influence the mixing process of droplets-gas in underwater depth-adjustable launcher cooling chamber and help engineers who design the launcher to distinguish the most important factor that impacts mixing performance in the cooling chamber.

Design/methodology/approach

Euler–Lagrangian droplet tracking method was used to simulate droplets-gas mixing process in the cooling chamber. The SST k-w model was adopted to simulate turbulence. Droplet breakup was described by KHRT hybrid model using modified contains which are more fit to the supersonic main flow condition.

Findings

The results show the counter-rotating vortex pairs which caused by injected liquid accelerate the mixing process. High-pressure supersonic freestream makes the liquid jet break into more small droplets due to the high momentum of the main stream. Axial injection angle has the greatest influence on Sauter mean diameter (SMD). Penetration height, SMD and total pressure loss slightly change in different tangential injection conditions. However, mixedness decreases with reduction of tangential injection angle due to a more limited space for spray developing. Enlarging orifice diameter raises penetration and mixedness greatly, while SMD and total pressure loss increase slightly.

Originality/value

The findings of this study confirm the key structure parameter to improve mixing performance in the cooling chamber. Engineers who design the underwater depth-adjustable launcher can refer the findings in this study to make control of launching power more accurate.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2020

Sheng Chen, Yuming Xing, Xin Liu and Liang Zhao

The purpose of this study is to investigate the effect of the injection angle α on the spray structures of an air-blast atomizer and help enhance the understanding of droplet-gas…

Abstract

Purpose

The purpose of this study is to investigate the effect of the injection angle α on the spray structures of an air-blast atomizer and help enhance the understanding of droplet-gas mixing process in such atomizers in the engineering domain.

Design/methodology/approach

The phenomena in the air-blast atomizer were numerically modelled using the computational fluid dynamics software Fluent 17.2. The Euler-Lagrange approach was applied to model the droplet tracking and droplet-gas interaction in studied cases. The standard k-ε model was used to simulate the turbulent flow. A model with a modified drag coefficient was used to consider the effects of the bending of the liquid column and its penetration in the primary breakup region. The Kelvin-Helmholtz, Rayleigh-Taylor model was applied to consider the secondary breakup of the droplets.

Findings

The basic spatial distribution and spray structures of the droplets corresponding to the angled liquid jet (α = 60°) were similar to those reported in liquid jets injected transversely into a gaseous crossflow studies. The injection angle α did not considerably influence the averaged Sauter to mean diameter (SMD) of the cross-sections. However, the spray structures pertaining to α = 30°, α = 60° and α = 90° were considerably different. In the case of the atomizer with multiple injections, a “collision region” was observed at α = 60° and characterized by a higher ci and larger averaged SMD in the central parts of the cross-sections.

Originality/value

The injection angle α is a key design parameter for air-blast atomizers. The findings of this study can help enhance the understanding of the droplet-gas mixing process in air-blast atomizers. Engineers who design air-blast atomizers and face new challenges in the process can refer to the presented findings to obtain the desired atomization performance. The code has been validated and can be used in the engineering design process of the gas-liquid jet atomizer.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Dan Chen, Fen Liu, Yi Zhang, Yun Zhang and Huamin Zhou

The numerical simulation of dispersed-phase evolution in injection molding process of polymer blends is of great significance in both adjusting material microstructure and…

213

Abstract

Purpose

The numerical simulation of dispersed-phase evolution in injection molding process of polymer blends is of great significance in both adjusting material microstructure and improving performances of the final products. This paper aims to present a numerical strategy for the simulation of dispersed-phase evolution for immiscible polymer blends in injection molding.

Design/methodology/approach

First, the dispersed-phase modeling is discussed in detail. Then the Maffettone–Minale model, affine deformation model, breakup model and coalescence statistical model are chosen for the dispersed-phase evolution. A general coupled model of microscopic morphological evolution and macroscopic flow field is constructed. Besides, a stable finite element simulation strategy based on pressure-stabilizing/Petrov–Galerkin/streamline-upwind/Petrov–Galerkin method is adopted for both scales.

Findings

Finally, the simulation results are compared and evaluated with the experimental data, suggesting the reliability of the presented numerical strategy.

Originality/value

The coupled modeling of dispersed-phase and complex flow field during injection molding and the tracing and simulation of droplet evolution during the whole process can be achieved.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1992

KAMEL M. AL‐KHALIL, THEO G. JR. KEITH and KENNETH J. DE WITT

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into…

Abstract

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modelled as a multi‐layer structure and the anti‐icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded within the layers. Details of the calculation procedure and the methods used are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2023

Nikesh Chowrasia, Subramani S.N., Harish Pothukuchi and B.S.V. Patnaik

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase…

Abstract

Purpose

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase significantly enhances the heat transfer coefficient due to latent heat of vaporization, eventually the formed vapor bubbles may coalesce and deteriorate the heat transfer from the heated wall to the liquid phase. Due to the poor heat transfer characteristics of the vapour phase, the heat transfer rate drastically reduces when it reaches a specific value of wall heat flux. Such a threshold value is identified as critical heat flux (CHF), and the phenomenon is known as departure from nucleate boiling (DNB). An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Therefore, the present study aims at the prediction of DNB type CHF in a hexagonal sub-assembly.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations are performed to predict DNB in a hexagonal sub-assembly. The methodology uses an Eulerian–Eulerian multiphase flow (EEMF) model in conjunction with multiple size group (MuSiG) model. The breakup and coalescence of vapour bubbles are accounted using a population balance approach.

Findings

Bubble departure diameter parameters in EEMF framework are recalibrated to simulate the near atmospheric pressure conditions. The predictions from the modified correlation for bubble departure diameter are found to be in good agreement against the experimental data. The simulations are further extended to investigate the influence of blockage (b) on DNB type CHF at low operating pressure conditions. Larger size vapour bubbles are observed to move away from the corner sub-channel region due to the presence of blockage. Corner sub-channels were found to be more prone to experience DNB type CHF compared to the interior and edge sub-channels.

Practical implications

An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Moreover, a wide spectrum of heat transfer equipment of engineering interest will be benefited by an accurate prediction of wall characteristics using breakup and coalescence-based models as described in the present study.

Originality/value

Simulations are performed to predict DNB type CHF. The EEMF and wall heat flux partition model framework coupled with the MuSiG model is novel, and a detailed variation of the coolant velocity, temperature and vapour volume fraction in a hexagonal sub-assembly was obtained. The present CFD model framework was observed to predict the onset of vapour volume fraction and DNB type CHF. Simulations are further extended to predict CHF in a hexagonal sub-assembly under the influence of blockage. For all the values of blockage, the vapour volume fraction is found to be higher in the corner region, and thus the corner sub-channel experiences CHF. Although DNB type CHF is observed in corner sub-channel, it is noticed that the presence of blockage in the interior sub-channel promotes the coolant mixing and results in higher values of CHF in the corner sub-channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 September 2022

Hang-Wei Wan, Yu-Quan Wen and Qi Zhang

The reaction dynamics of combustible clouds at high temperatures and pressures are a common form of energy output in aerospace and explosion accidents. The cloud explosion process…

Abstract

Purpose

The reaction dynamics of combustible clouds at high temperatures and pressures are a common form of energy output in aerospace and explosion accidents. The cloud explosion process is often affected by the external initial conditions. This study aims to numerically study the effects of airflow velocity, initial temperature and fuel concentration on the explosion behavior of isopropyl nitrate/air mixture in a semiconstrained combustor.

Design/methodology/approach

The discrete-phase model was adopted to consider the interaction between the gas-phase and droplet particles. A wave model was applied to the droplet breakup. A finite rate/eddy dissipation model was used to simulate the explosion process of the fuel cloud.

Findings

The peak pressure and temperature growth rate both decrease with the increasing initial temperature (1,000–2,200 K) of the combustor at a lower airflow velocity. The peak pressure increases with the increase of airflow velocity (50–100 m/s), whereas the peak temperature is not sensitive to the initial high temperature. The peak pressure of the two-phase explosion decreases with concentration (200–1,500 g/m3), whereas the peak temperature first increases and then decreases as the concentration increases.

Practical implications

Chain explosion reactions often occur under high-temperature, high-pressure and turbulent conditions. This study aims to provide prevention and data support for a gas–liquid two-phase explosion.

Originality/value

Sustained turbulence is realized by continuously injecting air and liquid fuel into a semiconfined high-temperature and high-pressure combustor to obtain the reaction dynamic parameters of a two-phase explosion.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 802