Search results

1 – 10 of 579
Article
Publication date: 10 July 2019

Hui Wang, Shou-Fu Tian and Yi Chen

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used…

Abstract

Purpose

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used to depict many nonlinear phenomena in fluid dynamics and plasma physics.

Design/methodology/approach

The authors apply the Bell’s polynomial approach, the homoclinic test technique and Hirota’s bilinear method to find the breather waves, rogue waves and solitary waves of the extended (3 + 1)-dimensional KP equation.

Findings

The results imply that the extended (3 + 1)-dimensional KP equation has breather wave, rogue wave and solitary wave solutions. Meanwhile, the authors provide the graphical analysis of such solutions to better understand their dynamical behavior.

Originality/value

These results may help us to further study the local structure and the interaction of solutions in KP-type equations. The authors hope that the results provided in this work can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

J I Ramos

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods…

Abstract

Purpose

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions.

Design/methodology/approach

Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained.

Findings

It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation.

Originality/value

This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Abdul-Majid Wazwaz

The purpose of this paper is to concern with a reliable treatment of the (2+1)-dimensional and the (3+1)-dimensional logarithmic Boussinesq equations (BEs). The author uses the…

Abstract

Purpose

The purpose of this paper is to concern with a reliable treatment of the (2+1)-dimensional and the (3+1)-dimensional logarithmic Boussinesq equations (BEs). The author uses the sense of the Gaussian solitary waves to determine these gaussons. The study confirms that models characterized by logarithmic nonlinearity give gaussons solitons of distinct physical structures.

Design/methodology/approach

The proposed technique, as presented in this work has been shown to be very efficient for solving nonlinear equations with logarithmic nonlinearity.

Findings

The (2+1) and the (3+1)-dimensional BEs were examined as well. The examined models feature interesting results in propagation of waves and fluid flow.

Research limitations/implications

The paper presents a new efficient algorithm for the higher dimensional logarithmic BEs.

Practical implications

The work shows the effect of logarithmic nonlinearity compared to other nonlinearities where standard solitons appear in the last case.

Social implications

The work will benefit audience who are willing to examine the effect of logarithmic nonlinearity.

Originality/value

The paper presents a new efficient algorithm for the higher dimensional logarithmic BEs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Lian-Li Feng and Tian-Tian Zhang

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which…

Abstract

Purpose

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which can be used to describe the propagation of weakly nonlinear dispersive long waves on the surface of a fluid.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional gKP equation.

Findings

The results imply that the gKP equation admits rogue waves, homoclinic breather waves and soliton waves. Moreover, the authors also find that rogue waves can come from the extreme behavior of the breather solitary wave. The authors analyze the propagation and interaction properties of these solutions to better understand the dynamic behavior of these solutions.

Originality/value

These results may help us to further study the local structure and the interaction of waves in KP-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 December 2020

Na Liu

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an…

Abstract

Purpose

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an interaction of long waves with short wave packets.

Design/methodology/approach

The author applies the Hirota’s bilinear method, extended homoclinic test approach and parameter limit method to construct the homoclinic breather waves and rogue waves of the (2 + 1)-dimensional Mel’nikov equation. Moreover, multi-soliton waves are constructed by using the three-wave method.

Findings

The results imply that the (2 + 1)-dimensional Mel’nikov equation has breather waves, rogue waves and multi-soliton waves. Moreover, the dynamic properties of such solutions are displayed vividly by figures.

Research limitations/implications

This paper presents efficient methods to find breather waves, rogue waves and multi-soliton waves for nonlinear evolution equations.

Originality/value

The outcome suggests that the extreme behavior of the homoclinic breather waves yields the rogue waves. Moreover, the multi-soliton waves are constructed, including the new breather two-solitary and two-soliton solutions. Meanwhile, the dynamics of these solutions will greatly enrich the diversity of the dynamics of the (2 + 1)-dimensional Mel’nikov equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2021

Shou-Fu Tian, Xiao-Fei Wang, Tian-Tian Zhang and Wang-Hua Qiu

The purpose of this paper is to study the stability analysis and optical solitary wave solutions of a (2 + 1)-dimensional nonlinear Schrödinger equation, which are derived from a…

Abstract

Purpose

The purpose of this paper is to study the stability analysis and optical solitary wave solutions of a (2 + 1)-dimensional nonlinear Schrödinger equation, which are derived from a multicomponent plasma with nonextensive distribution.

Design Methodology Approach

Based on the ansatz and sub-equation theories, the authors use a direct method to find stability analysis and optical solitary wave solutions of the (2 + 1)-dimensional equation.

Findings

By considering the ansatz method, the authors successfully construct the bright and dark soliton solutions of the equation. The sub-equation method is also extended to find its complexitons solutions. Moreover, the explicit power series solution is also derived with its convergence analysis. Finally, the influences of each parameter on these solutions are discussed via graphical analysis.

Originality Value

The dynamics of these solutions are analyzed to enrich the diversity of the dynamics of high-dimensional nonlinear Schrödinger equation type nonlinear wave fields.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1996

Jacqueline R. Postle and Ron Postle

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a…

Abstract

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a fabric can be completely specified in terms of its mechanical behaviour under general boundary conditions. Fabric deformation is dynamically analogous to waves travelling in a fluid. A localized two‐dimensional deformation evolves through the fabric to form a three‐dimensional drape or fold configuration. The nonlinear differential equations arising in the analysis of fabric deformation belong to the Klein‐Gordon family of equations which becomes the sine‐Gordon equation in three dimensions. The sine‐Gordon equation has its origins in the study of Bäcklund Transformations in differential geometry. Describes fabric deformation as a series of transformations of surfaces, defined in terms of curvature parameters using Gaussian representation of surfaces. By considering a deformed fabric as a two‐dimensional surface, algebraically constructs analytical solutions of fabric deformation by solving the sine‐Gordon Equation. The theory of Bäcklund Transformations is used to transform a trivial solution into a series of solitary wave solutions. These analytical expressions describing the curvature parameters of a surface represent actual solutions of fabric dynamical systems.

Details

International Journal of Clothing Science and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 November 2018

Jin-Jin Mao, Shou-Fu Tian and Tian-Tian Zhang

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the…

Abstract

Purpose

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the stability of soliton in a nonlinear media with weak dispersion.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional non-integrable KdV-type equation. The used approach formally derives the essential conditions for these solutions to exist.

Findings

The results show that the equation exists rogue waves, homoclinic breather waves and soliton waves. To better understand the dynamic behavior of these solutions, the authors analyze the propagation and interaction properties of the these solutions.

Originality/value

These results may help to investigate the local structure and the interaction of waves in KdV-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2018

Hui Wang and Tian-Tian Zhang

The purpose of this paper is to study stability analysis, solition solutions and Gaussian solitons of the generalized nonlinear Schrödinger equation with higher order terms, which…

Abstract

Purpose

The purpose of this paper is to study stability analysis, solition solutions and Gaussian solitons of the generalized nonlinear Schrödinger equation with higher order terms, which can be used to describe the propagation properties of optical soliton solutions.

Design/methodology/approach

The authors apply the ansatz method and the Hamiltonian system technique to find its bright, dark and Gaussian wave solitons and analyze its modulation instability analysis and stability analysis solution.

Findings

The results imply that the generalized nonlinear Schrödinger equation has bright, dark and Gaussian wave solitons. Meanwhile, the authors provide the graphical analysis of such solutions to better understand their dynamical behavior. Some constraint conditions are provided which can guarantee the existence of solitons. The authors analyze its modulation instability analysis and stability analysis solution.

Originality/value

These results may help us to further study the local structure and the interaction of solutions in generalized nonlinear Schrödinger -type equations. The authors hope that the results provided in this work can help enrich the dynamic behavior of the generalized nonlinear Schrödinger--type equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2022

Suheil Khuri

The purpose of this study is to produce families of exact soliton solutions (2+1)-dimensional Korteweg-de Vries (KdV) equation, that describes shallow water waves, using an…

Abstract

Purpose

The purpose of this study is to produce families of exact soliton solutions (2+1)-dimensional Korteweg-de Vries (KdV) equation, that describes shallow water waves, using an ansätze approach.

Design/methodology/approach

This article aims to introduce a recently developed ansätze for creating soliton and travelling wave solutions to nonlinear nonintegrable partial differential equations, especially those with physical significance.

Findings

A recently developed ansätze solution was used to successfully construct soliton solutions to the (2 + 1)-dimensional KdV equation. This straightforward method is an alternative to the Painleve test analysis, yielding similar results. The strategy demonstrated the existence of a single soliton solution, also known as a localized wave or bright soliton, as well as singular solutions or kink solitons.

Originality/value

The ansätze solution used to construct soliton solutions to the (2 + 1)-dimensional KdV equation is novel. New soliton solutions were also obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 579