Search results

1 – 10 of over 1000
Book part
Publication date: 8 October 2018

Christin L. Munsch and Elizabeth S. Zack

An accelerometer is a device that measures force due to gravity or a change in speed or direction of travel. This paper describes accelerometers and their application in other…

Abstract

Purpose

An accelerometer is a device that measures force due to gravity or a change in speed or direction of travel. This paper describes accelerometers and their application in other disciplines and, by way of an example, explores the utility of accelerometers for studying aggression. We end with a discussion of additional ways accelerometers might be used in group processes research.

Methodology

We first review the use of accelerometers in other disciplines. We then present the results of four studies that demonstrate the use of accelerometers to measure aggression. Study 1 establishes the measure’s concurrent validity. Study 2 concerns its stability and representative reliability. Study 3 seeks to establish the measure’s predictive validity by associating it with an existing measure. Study 4 demonstrates the ability of accelerometers to address a sociological research question.

Findings

In Studies 1 and 2, we find that accelerometers can be used to differentiate between distinct levels of aggression. In Study 3, we find that men’s average peak acceleration correlates with a previously validated measure of aggression. Study 4 uses accelerometers to reproduce a well-established finding in the aggression literature.

Practical Implications

We conclude that accelerometers are a flexible tool for group processes’ researchers and social scientists more broadly. Our findings should prove useful to social scientists interested in measuring aggression or in employing accelerometers in their work.

Article
Publication date: 1 March 2002

JOSE S. PENALVA ZUASTI

This article examines the economic impact of a major California earthquake, by focusing on the catastrophic damage to residential real estate. It asserts that the damage, although…

Abstract

This article examines the economic impact of a major California earthquake, by focusing on the catastrophic damage to residential real estate. It asserts that the damage, although substantial, would be small relative to the U.S. GNP. The author also asserts that the risk can be optimally allocated through reasonably priced insurance contracts and well‐functioning insurance derivative markets.

Details

The Journal of Risk Finance, vol. 3 no. 4
Type: Research Article
ISSN: 1526-5943

Content available
Book part
Publication date: 8 October 2018

Abstract

Details

Advances in Group Processes
Type: Book
ISBN: 978-1-78769-013-4

Article
Publication date: 2 November 2015

Ivan Balic, Ante Mihanovic and Boris Trogrlic

The purpose of this paper is to present a new modification of the multimodal pushover method, named the target acceleration method. The target acceleration is the minimum…

Abstract

Purpose

The purpose of this paper is to present a new modification of the multimodal pushover method, named the target acceleration method. The target acceleration is the minimum acceleration of the base that leads to the ultimate limit state of the structure, i.e., the lowest seismic resistance.

Design/methodology/approach

A nonlinear numerical model is used to determine the target acceleration, which is achieved using the iterative procedure according to the envelope principle. Validation of the target acceleration method was conducted on the basis of the results obtained by incremental dynamic analysis.

Findings

The influence of higher modes is highly significant. The general failure vector corresponding to the target acceleration differs from the first load vector and the form of the load with uniform acceleration according to the height of structure, as contained in the European Standard EN 1998-1. Comparison between the target acceleration, including the equivalent structural damping, and the failure peak ground acceleration obtained from the dynamic response of the structure exhibits notably good agreement. This result implies that the equivalent structural damping as calculated according to the formulation presented in this paper should be greater than that suggested in the literature.

Originality/value

The originally developed procedure named multimodal pushover target acceleration method can reasonably estimate the minimum acceleration of the base that leads to the ultimate limit state of the structure, and consequently provides a reliable tool for the assessment of the lowest seismic resistance.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1960

P.F. Richards

The general reasons for considering a fresh approach to the calculation of air‐worthiness design tail loads and associated torques due to elevator‐induced pitching manoeuvres are…

Abstract

The general reasons for considering a fresh approach to the calculation of air‐worthiness design tail loads and associated torques due to elevator‐induced pitching manoeuvres are discussed. Then follows a description of the manoeuvre itself, elevator actions to be assumed, and the proposed method of calculating the various response quantities. The analytical treatment of Czaykowski given to the unchecked manoeuvre is extended to cover the checked case in Appendix I, Part III and a comparison is made of the two types of manoeuvre. The application of the work to auto‐pilot feed‐back failure causing hunting of the elevator control is also dealt with. The effect of aircraft size, weight, e.g. position, forward speed and altitude on the various response quantities are discussed, with particular emphasis on the importance of the manoeuvre margin. To avoid possible confusion of terms the two types of elevator‐induced manoeuvre mentioned above and discussed in this paper are defined as follows:

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 18 June 2019

Jing Liu, Linfeng Wang, Zhifeng Shi, Wennian Yu and Huifang Xiao

The purpose of this study is to investigate the contact models for contact and vibration features of cylindrical roller bearings (CRBs). CRBs are important parts of rotating…

Abstract

Purpose

The purpose of this study is to investigate the contact models for contact and vibration features of cylindrical roller bearings (CRBs). CRBs are important parts of rotating machinery. The contact deformation between the roller and the raceway is an essential research topic for the CRBs. The contact deformation between the roller and the raceway can greatly affect vibration characteristics and fatigue life of the CRBs. In this investigation, six different methods are adopted to calculate the contact deformation, contact area width and contact stress between the roller and raceways of a CRB.

Design/methodology/approach

In this paper, the contact deformations and the contact stiffnesses between the roller and the raceway of a CRB obtained by various well-known empirical methods (Lundberg’s, Palmgren’s, Houpert’s, Cheng’s and Hertzian methods) are directly compared with those by the finite element (FE) method. A two degree-of-freedom (2 DOF) dynamic model of the CRB is applied to investigate the effects of the contact stiffness obtained by different line contact deformation calculation methods on the vibration characteristics, such as the root mean square (RMS), the peak to peak (PTP), the crest factor and the kurtosis of the displacement, velocity and acceleration of the inner raceway.

Findings

The computational results show that different calculation methods for the contact deformations between rollers and raceways have significant effects on the vibrations of the CRB. It is found that that the differences of computational results obtained by Palmgren’s and Lundberg’s models with respect to the FE method are smaller than those by the other three methods, i.e. Houpert’s, Cheng’s and Hertzain models. The amplitude and peak frequency of the frequency response functions from Palmgren’s method are much more similar to those from the finite element method. The above results indicate that Palmgren’s method is a better calculation method for predicting the contact deformations and dynamics of the CRBs.

Originality/value

This work adopts six different methods to calculate the contact deformation, contact area width and contact stress between the roller and raceways of a CRB. Moreover, a vibration model of a CRB is used to investigate the effect of contact stiffness obtained by the above methods on the vibrations of the CRB. The works can give some guidance for the accurate analytical method for calculating the contact deformations between rollers and raceways and the vibrations of the CRB.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2016

M. Grujicic, S. Ramaswami, J. S. Snipes, R. Yavari and P. Dudt

The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments…

Abstract

Purpose

The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. The paper aims to discuss this issue.

Design/methodology/approach

In the present work, an augmentation of the ACH for improved blast protection is considered. This augmentation includes the use of a polyurea (a nano-segregated elastomeric copolymer) based ACH external coating. To demonstrate the efficacy of this approach, blast experiments are carried out on instrumented head-mannequins (without protection, protected using a standard ACH, and protected using an ACH augmented by a polyurea explosive-resistant coating (ERC)). These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction finite-element analysis.

Findings

The results obtained clearly demonstrated that the use of an ERC on an ACH affects (generally in a beneficial way) head-mannequin dynamic loading and kinematic response as quantified by the intracranial pressure, impulse, acceleration and jolt.

Originality/value

To the authors’ knowledge, the present work is the first reported combined experimental/computational study of the blast-protection efficacy and the mild traumatic brain-injury mitigation potential of polyurea when used as an external coating on a helmet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 21 September 2022

Dmitrij Celov and Mariarosaria Comunale

Recently, star variables and the post-crisis nature of cyclical fluctuations have attracted a great deal of interest. In this chapter, the authors investigate different methods of

Abstract

Recently, star variables and the post-crisis nature of cyclical fluctuations have attracted a great deal of interest. In this chapter, the authors investigate different methods of assessing business cycles (BCs) for the European Union in general and the euro area in particular. First, the authors conduct a Monte Carlo (MC) experiment using a broad spectrum of univariate trend-cycle decomposition methods. The simulation aims to examine the ability of the analysed methods to find the observed simulated cycle with structural properties similar to actual macroeconomic data. For the simulation, the authors used the structural model’s parameters calibrated to the euro area’s real gross domestic product (GDP) and unemployment rate. The simulation outcomes indicate the sufficient composition of the suite of models (SoM) consisting of popular Hodrick–Prescott, Christiano–Fitzgerald and structural trend-cycle-seasonal filters, then used for the real application. The authors find that: (i) there is a high level of model uncertainty in comparing the estimates; (ii) growth rate (acceleration) cycles have often the worst performances, but they could be useful as early-warning predictors of turning points in growth and BCs; and (iii) the best-performing MC approaches provide a reasonable combination as the SoM. When swings last less time and/or are smaller, it is easier to pick a good alternative method to the suite to capture the BC for real GDP. Second, the authors estimate the BCs for real GDP and unemployment data varying from 1995Q1 to 2020Q4 (GDP) or 2020Q3 (unemployment), ending up with 28 cycles per country. This analysis also confirms that the BCs of euro area members are quite synchronized with the aggregate euro area. Some major differences can be found, however, especially in the case of periphery and new member states, with the latter improving in terms of coherency after the global financial crisis. The German cycles are among the cyclical movements least synchronized with the aggregate euro area.

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Article
Publication date: 7 December 2018

Haitao Wang, Jiayu Shen and Da Gao

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic…

Abstract

Purpose

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic damage mode of abutment in liquefied ground.

Design/methodology/approach

Based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software dynamic effective stress analysis for ground (UWLC) is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. Then, the influences of the horizontal binding force of the beam, the liquefaction layer thickness, the top weight of the abutment, the peak acceleration, the liquefaction layer buried depth and the type of the foundation soil on the abutment seismic damage model are studied.

Findings

The results show that numerical simulation results are consistent with the actual seismic damage, and it is feasible to use UWLC software to simulate seismic damage. The results show that the seismic failure mode of the gravity abutment in liquefied ground is slip–rotation coupling type, not single slip type or rotation type. The large deformation of abutment bottom layer, horizontal binding force of the beam and post-stage soil pressure are the main reasons for abutment rotation or even destruction.

Research limitations/implications

A series of basic assumptions are used in the calculation process in this paper. The gravity abutment is defined as the elastic body and neglects its local deformation. The soil layer is a homogeneous isotropic. The consolidation process and the drainage boundary problem are not considered in the calculation process. Therefore, the paper may have some limitations.

Originality/value

To further research the seismic damage mode and influencing factors of abutment in liquefied ground, in this paper, based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software UWLC is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. The seismic damage mode and influencing factors of gravity abutment in liquefied ground have been studied.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 1000