Search results

1 – 10 of 228
Open Access
Article
Publication date: 2 April 2024

Koraljka Golub, Osma Suominen, Ahmed Taiye Mohammed, Harriet Aagaard and Olof Osterman

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an…

Abstract

Purpose

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an open source software package on a large set of Swedish union catalogue metadata records, with Dewey Decimal Classification (DDC) as the target classification system. It also aimed to contribute to the body of research on aboutness and related challenges in automated subject indexing and evaluation.

Design/methodology/approach

On a sample of over 230,000 records with close to 12,000 distinct DDC classes, an open source tool Annif, developed by the National Library of Finland, was applied in the following implementations: lexical algorithm, support vector classifier, fastText, Omikuji Bonsai and an ensemble approach combing the former four. A qualitative study involving two senior catalogue librarians and three students of library and information studies was also conducted to investigate the value and inter-rater agreement of automatically assigned classes, on a sample of 60 records.

Findings

The best results were achieved using the ensemble approach that achieved 66.82% accuracy on the three-digit DDC classification task. The qualitative study confirmed earlier studies reporting low inter-rater agreement but also pointed to the potential value of automatically assigned classes as additional access points in information retrieval.

Originality/value

The paper presents an extensive study of automated classification in an operative library catalogue, accompanied by a qualitative study of automated classes. It demonstrates the value of applying semi-automated indexing in operative information retrieval systems.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Open Access
Article
Publication date: 23 January 2024

Wang Zengqing, Zheng Yu Xie and Jiang Yiling

With the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene…

Abstract

Purpose

With the rapid development of railway-intelligent video technology, scene understanding is becoming more and more important. Semantic segmentation is a major part of scene understanding. There is an urgent need for an algorithm with high accuracy and real-time to meet the current railway requirements for railway identification. In response to this demand, this paper aims to explore a variety of models, accurately locate and segment important railway signs based on the improved SegNeXt algorithm, supplement the railway safety protection system and improve the intelligent level of railway safety protection.

Design/methodology/approach

This paper studies the performance of existing models on RailSem19 and explores the defects of each model through performance so as to further explore an algorithm model dedicated to railway semantic segmentation. In this paper, the authors explore the optimal solution of SegNeXt model for railway scenes and achieve the purpose of this paper by improving the encoder and decoder structure.

Findings

This paper proposes an improved SegNeXt algorithm: first, it explores the performance of various models on railways, studies the problems of semantic segmentation on railways and then analyzes the specific problems. On the basis of retaining the original excellent MSCAN encoder of SegNeXt, multiscale information fusion is used to further extract detailed features such as multihead attention and mask, solving the problem of inaccurate segmentation of current objects by the original SegNeXt algorithm. The improved algorithm is of great significance for the segmentation and recognition of railway signs.

Research limitations/implications

The model constructed in this paper has advantages in the feature segmentation of distant small objects, but it still has the problem of segmentation fracture for the railway, which is not completely segmented. In addition, in the throat area, due to the complexity of the railway, the segmentation results are not accurate.

Social implications

The identification and segmentation of railway signs based on the improved SegNeXt algorithm in this paper is of great significance for the understanding of existing railway scenes, which can greatly improve the classification and recognition ability of railway small object features and can greatly improve the degree of railway security.

Originality/value

This article introduces an enhanced version of the SegNeXt algorithm, which aims to improve the accuracy of semantic segmentation on railways. The study begins by investigating the performance of different models in railway scenarios and identifying the challenges associated with semantic segmentation on this particular domain. To address these challenges, the proposed approach builds upon the strong foundation of the original SegNeXt algorithm, leveraging techniques such as multi-scale information fusion, multi-head attention, and masking to extract finer details and enhance feature representation. By doing so, the improved algorithm effectively resolves the issue of inaccurate object segmentation encountered in the original SegNeXt algorithm. This advancement holds significant importance for the accurate recognition and segmentation of railway signage.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 10 May 2023

Marko Kureljusic and Erik Karger

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current…

76351

Abstract

Purpose

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current technological developments. Thus, artificial intelligence (AI) in financial accounting is often applied only in pilot projects. Using AI-based forecasts in accounting enables proactive management and detailed analysis. However, thus far, there is little knowledge about which prediction models have already been evaluated for accounting problems. Given this lack of research, our study aims to summarize existing findings on how AI is used for forecasting purposes in financial accounting. Therefore, the authors aim to provide a comprehensive overview and agenda for future researchers to gain more generalizable knowledge.

Design/methodology/approach

The authors identify existing research on AI-based forecasting in financial accounting by conducting a systematic literature review. For this purpose, the authors used Scopus and Web of Science as scientific databases. The data collection resulted in a final sample size of 47 studies. These studies were analyzed regarding their forecasting purpose, sample size, period and applied machine learning algorithms.

Findings

The authors identified three application areas and presented details regarding the accuracy and AI methods used. Our findings show that sociotechnical and generalizable knowledge is still missing. Therefore, the authors also develop an open research agenda that future researchers can address to enable the more frequent and efficient use of AI-based forecasts in financial accounting.

Research limitations/implications

Owing to the rapid development of AI algorithms, our results can only provide an overview of the current state of research. Therefore, it is likely that new AI algorithms will be applied, which have not yet been covered in existing research. However, interested researchers can use our findings and future research agenda to develop this field further.

Practical implications

Given the high relevance of AI in financial accounting, our results have several implications and potential benefits for practitioners. First, the authors provide an overview of AI algorithms used in different accounting use cases. Based on this overview, companies can evaluate the AI algorithms that are most suitable for their practical needs. Second, practitioners can use our results as a benchmark of what prediction accuracy is achievable and should strive for. Finally, our study identified several blind spots in the research, such as ensuring employee acceptance of machine learning algorithms in companies. However, companies should consider this to implement AI in financial accounting successfully.

Originality/value

To the best of our knowledge, no study has yet been conducted that provided a comprehensive overview of AI-based forecasting in financial accounting. Given the high potential of AI in accounting, the authors aimed to bridge this research gap. Moreover, our cross-application view provides general insights into the superiority of specific algorithms.

Details

Journal of Applied Accounting Research, vol. 25 no. 1
Type: Research Article
ISSN: 0967-5426

Keywords

Open Access
Article
Publication date: 27 February 2024

Oscar F. Bustinza, Luis M. Molina Fernandez and Marlene Mendoza Macías

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for…

Abstract

Purpose

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for uncovering the antecedents behind product and product–service innovation (PSI).

Design/methodology/approach

The ML approach is novel in the field of innovation antecedents at the country level. A sample of the Equatorian National Survey on Technology and Innovation, consisting of more than 6,000 firms, is used to rank the antecedents of innovation.

Findings

The analysis reveals that the antecedents of product and PSI are distinct, yet rooted in the principles of open innovation and competitive priorities.

Research limitations/implications

The analysis is based on a sample of Equatorian firms with the objective of showing how ML techniques are suitable for testing the antecedents of innovation in any other context.

Originality/value

The novel ML approach, in contrast to traditional quantitative analysis of the topic, can consider the full set of antecedent interactions to each of the innovations analyzed.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Open Access
Article
Publication date: 21 February 2024

Aysu Coşkun and Sándor Bilicz

This study focuses on the classification of targets with varying shapes using radar cross section (RCS), which is influenced by the target’s shape. This study aims to develop a…

Abstract

Purpose

This study focuses on the classification of targets with varying shapes using radar cross section (RCS), which is influenced by the target’s shape. This study aims to develop a robust classification method by considering an incident angle with minor random fluctuations and using a physical optics simulation to generate data sets.

Design/methodology/approach

The approach involves several supervised machine learning and classification methods, including traditional algorithms and a deep neural network classifier. It uses histogram-based definitions of the RCS for feature extraction, with an emphasis on resilience against noise in the RCS data. Data enrichment techniques are incorporated, including the use of noise-impacted histogram data sets.

Findings

The classification algorithms are extensively evaluated, highlighting their efficacy in feature extraction from RCS histograms. Among the studied algorithms, the K-nearest neighbour is found to be the most accurate of the traditional methods, but it is surpassed in accuracy by a deep learning network classifier. The results demonstrate the robustness of the feature extraction from the RCS histograms, motivated by mm-wave radar applications.

Originality/value

This study presents a novel approach to target classification that extends beyond traditional methods by integrating deep neural networks and focusing on histogram-based methodologies. It also incorporates data enrichment techniques to enhance the analysis, providing a comprehensive perspective for target detection using RCS.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

181

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 14 December 2023

Huijuan Zhou, Rui Wang, Dongyang Weng, Ruoyu Wang and Yaoqin Qiao

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making…

Abstract

Purpose

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making the train stranded in the interval between stations. This study aims to reduce the impact of interrupt events and improve service levels.

Design/methodology/approach

To address this issue, this paper considers the constraints of train operation safety, capacity and dynamic passenger flow demand. It proposes a method for adjusting small loops during interruption events and constructs a train operation adjustment model with the objective of minimizing the total passenger waiting time. This model enables the rapid development of train operation plans in interruption scenarios, coordinating train scheduling and line resources to minimize passenger travel time and mitigate the impact of interruptions. Regarding the proposed train operation adjustment model, an improved genetic algorithm (GA) is designed to solve it.

Findings

The model and algorithm are applied to a case study of interruption events on Beijing Subway Line 5. The results indicate that after solving the constructed model, the train departure intervals can be maintained between 1.5 min and 3 min. This ensures both the safety of train operations on the line and a good match with passengers’ travel demands, effectively reducing the total passenger waiting time and improving the service level of the urban rail transit system during interruptions. Compared to the GA algorithm, the algorithm proposed in this paper demonstrates faster convergence speed and better computational results.

Originality/value

This study explicitly outlines the adjustment method of using short-turn operation during operational interruptions, with train departure times and station stop times as decision variables. It takes into full consideration safety constraints on train operations, train capacity constraints and dynamic passenger demand. It has constructed a train schedule optimization model with the goal of minimizing the total waiting time for all passengers in the system.

Access

Only Open Access

Year

Last 3 months (228)

Content type

1 – 10 of 228