Search results

1 – 5 of 5
Article
Publication date: 5 October 2018

Junxia Jiang, Chen Bian, Yunbo Bi and Yinglin Ke

The purpose of this paper is to design, analyze and optimize a new type of inner-side working head for automatic horizontal dual-machine cooperative drilling and riveting system…

Abstract

Purpose

The purpose of this paper is to design, analyze and optimize a new type of inner-side working head for automatic horizontal dual-machine cooperative drilling and riveting system. The inner-side working head is the key component of automatic drilling and riveting system, and it is a challenge to design an inner-side working head which must be stiffness and stable with a compact structure to realize its functions.

Design/methodology/approach

According to the assembly structure features of large aircraft panels and riveting process requirements, a new type of inner-side working head is designed for pressure riveting. The force condition of the inner-side working head during the riveting process is analyzed and the deformation model is established. Design optimization is performed based on genetic algorithm and finite element analysis. The optimized inner-side working head is tested with automatic horizontal dual-machine cooperative drilling and riveting system.

Findings

The deformation model provides the precision compensation basis for control system. Application test results show that the automatic drilling and riveting system can realize assembly of large aircraft panel with high efficiency and quality through the inner-side working head.

Research limitations/implications

The inner-side working head has been used in aircraft panel assembly.

Practical implications

The inner-side working head has been used in aircraft panel assembly.

Originality/value

This paper presents the design, analysis and optimization of a new type of inner-side working head which can realize automatic riveting for aircraft panel. The research will promote the automation of aircraft panel assembly.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Article
Publication date: 1 April 2014

Yunbo Bi, Weimiao Yan and Yinglin Ke

The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose…

585

Abstract

Purpose

The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose of this paper is to propose a method to predict and correct the assembly deformation of a large fuselage panel during digital assembly by using a finite element (FE) analysis and partial least squares regression (PLSR) method.

Design/methodology/approach

A FE model is proposed to optimize the layout of load-transmitting devices to reduce panel deformation after the process of hoisting and supporting. Furthermore, another FE model is established to investigate the deformation behavior of the panel. By orthogonal simulations, the position error data of measurement points representing the precision of the panel are obtained. Then, a mathematical model of the relationship between the position errors of measurement points on the panel and the displacements of numerical control positioners is developed based on the PLSR method.

Findings

The case study shows that the model has a high level of computing accuracy and that the proposed method is an efficient way to correct the panel deformation in digital assembly.

Originality/value

The results of this study will enhance the understanding of the deformation behavior of a panel in aircraft digital assembly and help to improve the assembly precision systematically and efficiently.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 September 2014

Gang Liu, Wei Tang, Ying-Lin Ke, Qing-Liang Chen and Yunbo Bi

The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic…

Abstract

Purpose

The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic riveting in panel assemblies, the traditional approach of determination of pre-joining processes entirely rests on the experience of workers, which leads to the improper number, location and sequence of pre-joining, the low quality stability and the high repair rate in most cases.

Design/methodology/approach

The clearances computation with the complete finite element model for every process combination is time-consuming. Therefore a fast pre-joining processes optimization model (FPPOM) is proposed. This model treats both the measured initial clearances and the stiffness matrices of key points of panels as an input; considers the permissive clearances as an evaluation criterion; regards the optimal number, location and sequence as an objective; and takes the neighborhood-search-based adaptive genetic algorithm as a solution.

Findings

A comparison between the FPPOM and complete finite element model with clearances (CFEMC) was made in practice. Further, the results indicate that running the FPPOM is time-saving by >90 per cent compared with the CFEMC.

Practical implications

This paper provides practical insights into realizing the pre-joining processes optimization quickly.

Originality/value

This paper is the first to propose the FPPOM, which could simplify the processes, reduce the degrees of freedom of nodes and conduct the manufacturers to standardized manipulations.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 27 June 2019

Guijiang Duan, Zhibang Shen and Rui Liu

This paper aims to promote the integration of the relative position accuracy (RPA) measurement and evaluation in digital assembly process by adopting the model-based method. An…

Abstract

Purpose

This paper aims to promote the integration of the relative position accuracy (RPA) measurement and evaluation in digital assembly process by adopting the model-based method. An integrated framework for RPA measurement is proposed based on a model-based definition (MBD) data set. The study also aims to promote the efficiency of inspection planning of RPA measurement by improving the reusability and configurability of the inspection planning.

Design/methodology/approach

The works have been carried out on three layers. In the data layer, an extended MBD data set is constructed to describe the objects and data for defining RPA measurement items; In definition layer, a model based and hierarchical structure for RPA item definition is constructed to support quick definition for RPA measurement items. In function layer, a toolset consisting three modules is constructed in a sequence from measurement planning to RPA value solving to visualized displaying again. Based on this framework, a prototype system is developed.

Findings

The paper provides an identified practice of model-based inspection. It suggests that MBD is valuable in promoting both the integration and efficiency of digital inspection.

Research limitations/implications

The templates and constructed geometry objects given in this paper are still limited in a scenario of aircraft assembly. The integrity and universality of them still need follow-up works.

Practical implications

The paper includes implications for the model based digital inspection, the digital assembly and the extended application of MBD.

Originality/value

This paper expands the application of MBD in inspection and fulfils the need to promote the integration and efficiency of digital inspection in large-scale component assembly.

1 – 5 of 5