Search results

1 – 7 of 7
Article
Publication date: 13 May 2021

Aiping Jiang, Zhenni Huang, Jiahui Xu and Xuemin Xu

The purpose of this paper is to propose a condition-based opportunistic maintenance policy considering economic dependence for a series–parallel hybrid system with a K-out-of-N

Abstract

Purpose

The purpose of this paper is to propose a condition-based opportunistic maintenance policy considering economic dependence for a series–parallel hybrid system with a K-out-of-N redundant structure, where a single component in series is denoted as subsystem1, and K-out-of-N redundant structure is denoted as subsystem2.

Design/methodology/approach

Based on the theory of Residual Useful Life (RUL), inspection points are determined, and then different maintenance actions are adopted in the purpose of minimizing the cost rate. Both perfect and imperfect maintenance actions are carried out for subsystem1. More significantly, regarding economic dependence, condition-based opportunistic maintenance is designed for the series–parallel hybrid system: preemptive maintenance for subsystem1, and both preemptive and postponed maintenance for subsystem2.

Findings

The sensitivity analysis indicates that the proposed policy outperforms two classical maintenance policies, incurring the lowest total cost rate under the context of both heterogeneous and quasi-homogeneous K-out-of-N subsystems.

Practical implications

This model can be applied in series–parallel systems with redundant structures that are widely used in power transmission systems in electric power plants, manufacturing systems in textile factories and sewerage systems. Considering inconvenience and high cost incurred in the inspection of hybrid systems, this model helps production managers better maintain these systems.

Originality/value

In maintenance literature, much attention has been received in repairing strategies on hybrid systems with economic dependence considering preemptive maintenance. Limited work has considered postponed maintenance. However, this paper uses both condition-based preemptive and postponed maintenance on the issue of economic dependence bringing opportunities for grouping maintenance activities for a series–parallel hybrid system.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 August 2022

Ronghua Cai, Jiamei Yang, Xuemin Xu and Aiping Jiang

The purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers…

Abstract

Purpose

The purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.

Design/methodology/approach

Based on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.

Findings

An increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.

Practical implications

In reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.

Originality/value

Previous research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 September 2016

Xuemin Zhao and Xinbao Wang

At present, the evaluation methodology on the design innovation of the stadia is not complete. The degree of innovation of the design scheme of the stadia still cannot be…

Abstract

At present, the evaluation methodology on the design innovation of the stadia is not complete. The degree of innovation of the design scheme of the stadia still cannot be quantitatively estimated; this inability makes it difficult to guide the selection of a design scheme. To solve the problem of evaluation on the innovative design of the stadia, improve such design’s evaluation theory, and accurately direct the selection of the design scheme of the stadia, the Delphi method is used to select evaluation indexes. Moreover, analytic hierarchy process (AHP) is applied to determine the index weight in this study; based on this index weight, fuzzy comprehensive evaluation is used to establish the model of the design innovation evaluation of the stadia. The model involves the comprehensive and simple selection of indexes and the high reliability of weight selection; the model can quantitatively calculate the comprehensive index evaluation value of the design innovation of the stadia in a relatively accurate and rapid way. In this study, Hunan People’s Stadium is taken as the example for design innovation evaluation; the procedure of design innovation evaluation is introduced in detail. The design innovation evaluation value of the stadia is 2.977 through analysis; this value indicates an ordinary degree of innovation. The innovation evaluation value of the shape is 3.425; this value shows a relatively high degree of innovation. The innovation evaluation value of the structure is 2.47; this value represents a relatively low degree of innovation. The model in this study is an accurate and prompt model that can conduct a comprehensive evaluation on the design innovation of the stadia based on quantitative calculation. This model directly and comprehensively finds the advantages and disadvantages of a design scheme. Thus, it is quite suitable for the design innovation evaluation of the stadia.

Details

Open House International, vol. 41 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 2 December 2019

Yun Liu, Weiyuan Yu, Xuemin Sun and Fengfeng Wang

This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered…

Abstract

Purpose

This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered Ni/Sn/Ni samples.

Design/methodology/approach

The Ni/Sn/Ni joints were obtained through ultrasonic-assisted soldering. The formation of IMCs, their composition, grain morphology and the fractured-surface microstructures from shear tests were characterized using scanning electron microscopy and energy-dispersive x-ray spectroscopy.

Findings

Without USV, a planar interfacial Ni3Sn4 layer was formed at the Ni/Sn interface, and a few Ni3Sn4 grains were distributed in the soldered joint. The morphology of these grains was needle-shaped. With USV, several grooves were formed at the interfacial Ni3Sn4 layer due to ultrasonic cavitation. Some deepened grooves led to “neck” connections at the roots of the Ni3Sn4 grains, which accelerated the strong detachment of Ni3Sn4 from the substrate. In addition, two types of Ni3Sn4 grains, needle-shaped and granular-shaped, were observed at the interface. Furthermore, the shear strength increased with longer USV time, which was attributed to the thinning of the interfacial IMC layers and dispersion strengthening from the Ni3Sn4 particles distributed evenly in the joint.

Originality/value

The novelty of the paper is the detailed study of the effect of USV on the morphology, size changes of interfacial IMC and joint strength. This provides guidance for the application of ultrasonic-assisted soldering in electronics packaging.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 17 December 2019

Yin Kedong, Shiwei Zhou and Tongtong Xu

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The…

1390

Abstract

Purpose

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The purpose of this paper is to provide theoretical guidance and reference standards for the indicator system design process, laying a solid foundation for the application of the indicator system, by systematically exploring the expert evaluation method to optimize the index system to enhance its credibility and reliability, to improve its resolution and accuracy and reduce its objectivity and randomness.

Design/methodology/approach

The paper is based on system theory and statistics, and it designs the main line of “relevant theoretical analysis – identification of indicators – expert assignment and quality inspection” to achieve the design and optimization of the indicator system. First, the theoretical basis analysis, relevant factor analysis and physical process description are used to clarify the comprehensive evaluation problem and the correlation mechanism. Second, the system structure analysis, hierarchical decomposition and indicator set identification are used to complete the initial establishment of the indicator system. Third, based on expert assignment method, such as Delphi assignments, statistical analysis, t-test and non-parametric test are used to complete the expert assignment quality diagnosis of a single index, the reliability and validity test is used to perform single-index assignment correction and consistency test is used for KENDALL coordination coefficient and F-test multi-indicator expert assignment quality diagnosis.

Findings

Compared with the traditional index system construction method, the optimization process used in the study standardizes the process of index establishment, reduces subjectivity and randomness, and enhances objectivity and scientificity.

Originality/value

The innovation point and value of the paper are embodied in three aspects. First, the system design process of the combined indicator system, the multi-dimensional index screening and system optimization are carried out to ensure that the index system is scientific, reasonable and comprehensive. Second, the experts’ background is comprehensively evaluated. The objectivity and reliability of experts’ assignment are analyzed and improved on the basis of traditional methods. Third, aim at the quality of expert assignment, conduct t-test, non-parametric test of single index, and multi-optimal test of coordination and importance of multiple indicators, enhance experts the practicality of assignment and ensures the quality of expert assignment.

Details

Marine Economics and Management, vol. 2 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

Article
Publication date: 3 March 2020

Vitus Mwinteribo Tabie, Chong Li, Wang Saifu, Jianwei Li and Xiaojing Xu

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

1253

Abstract

Purpose

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

Design/methodology/approach

Following a brief introduction of titanium (Ti) alloys, this paper considers the near-α group of Ti alloys, which are the most popular high-temperature Ti alloys developed for a high-temperature application, particularly in compressor disc and blades in aero-engines. The paper is relied on literature within the past decade to discuss phase stability and microstructural effect of alloying elements, plastic deformation and reinforcements used in the development of these alloys.

Findings

The near-a Ti alloys show high potential for high-temperature applications, and many researchers have explored the incorporation of TiC, TiB SiC, Y2O3, La2O3 and Al2O3 reinforcements for improved mechanical properties. Rolling, extrusion, forging and some severe plastic deformation (SPD) techniques, as well as heat treatment methods, have also been explored extensively. There is, however, a paucity of information on SiC, Y2O3 and carbon nanotube reinforcements and their combinations for improved mechanical properties. Information on some SPD techniques such as cyclic extrusion compression, multiaxial compression/forging and repeated corrugation and straightening for this class of alloys is also limited.

Originality/value

This paper provides a topical, technical insight into developments in near-a Ti alloys using literature from within the past decade. It also outlines the future developments of this class of Ti alloys.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2019

Daniel Esene Okojie, Adisa Abdul-Ganiyu Jimoh, Yskandar Hamam and Adebayo Ademola Yusuff

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that…

Abstract

Purpose

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that does not ensure reliable dispatch of optimum power flow during outage contingency. The survey aims to enlarge the network capacity utilisation to rely on the entire transmission lines network operation.

Design/methodology/approach

The paper suggests transmission line switching (TLS) approach as a viable corrective mechanism for power dispatch. The TLS process is incorporated into a constraint programming language extension optimisation solver that selects the switchable line candidates as integer variables in the mixed integer programming problem.

Findings

The paper provides a practical awareness of reserve capacity in the lines that provide network security in outage contingency. At optimum power flow dispatch, the TLS is extended to optimal transmission line switching (OTLS) that indicates optimal capacity utilisation (OCU) of the available reserve capacity (ARC) in the network lines.

Practical implications

Computational efficiency influenced the extension of the OTLS to optimal transmission switching of power flow (OTSPF). The application of OTSPF helps reduce the use of flexible AC transmission systems (FACTS) and construction of new transmission lines..

Originality/value

The paper surveys TLS efforts in network capacity utilisation. The suggested ARC fulfils the need for an index with which the dispatchable lines may be identified for the optimal capacity utilisation of transmission lines network.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 7 of 7