Search results

1 – 7 of 7
Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 June 2024

Xinran Kong and Wei Wang

Research on corporate social responsibility (CSR) within the real estate sector is limited, and the precise workings of its impact are still unclear. Under the premise that real…

Abstract

Purpose

Research on corporate social responsibility (CSR) within the real estate sector is limited, and the precise workings of its impact are still unclear. Under the premise that real estate enterprises face environmental uncertainty in China, this study explored the impact of CSR on real estate enterprise value.

Design/methodology/approach

To investigate the impact of CSR on enterprise value, we studied 111 real estate enterprises with A-shares listed on Shanghai and Shenzhen stock exchanges from 2010 to 2020, and performed empirical tests to determine the moderating effect of environmental uncertainty on this relationship.

Findings

(1) The fulfillment of corporate social responsibility (CSR) significantly influences the value of real estate enterprises. A sub-dimensional analysis reveals that fulfilling stakeholder and social welfare responsibilities within CSR positively impacts enterprise value, whereas environmental responsibility does not exert a notable effect. (2) The uncertainty associated with environmental changes profoundly affects the relationship between CSR and the value of real estate enterprises. More precisely, as environmental uncertainty increases, it amplifies the beneficial impact of CSR on enterprise value.

Practical implications

These findings are valuable for real estate enterprises as they navigate the transition towards sustainable development, and they also provide insight for the government in formulating policies aimed at regulating the real estate sector.

Originality/value

This study complements the existing discussion and research on corporate social responsibility (CSR) and enterprise value in the real estate industry, while elucidating the underlying mechanism of how environmental uncertainty mediates the relationship between the two.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 19 July 2024

Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…

Abstract

Purpose

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.

Design/methodology/approach

The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.

Findings

Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.

Originality/value

This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 May 2024

Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Abstract

Purpose

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Design/methodology/approach

The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.

Findings

The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.

Practical implications

This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.

Originality/value

In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 June 2024

Ting Li, Zhipeng Zhang, Junhai Wang, Tingting Yan, Rui Wang, Xinran Li, Lixiu Zhang and Xiaoyi Wei

This study aims to prepare thymol-based deep eutectic solvents (DESs) and use them as lubricates for friction and wear tests to simulate the wear conditions of hybrid bearings.

Abstract

Purpose

This study aims to prepare thymol-based deep eutectic solvents (DESs) and use them as lubricates for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricants were investigated and the anti-wear mechanism of thymol-based DESs was discussed.

Findings

The findings demonstrate that because of the formation of a fluid lubrication film and excellent kinematic viscosity, the lubrication effect of the prepared DES is improved by about 50% compared to the base lubricating oil. The prepared [Ch]Cl-thymol DES has a better anti-friction and lubrication effect than citric-thymol, EG-thymol and urea-thymol DESs, with an average friction coefficient of about 0.04.

Originality/value

In this work, the friction reduction properties of thymol-based DESs were studied as lubricants for the first time, and the lubrication mechanism of sample materials was investigated.

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 October 2023

Huijie Zhong, Xinran Zhang, Kam C. Chan and Chao Yan

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or…

Abstract

Purpose

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or industry level in the context of developed countries. This study examines the impact of imported industrial robots on firm innovation at the firm level in China.

Design/methodology/approach

Drawing on a large dataset of more than three million records in China, including non-publicly traded small and medium firms, the authors adopt a difference-in-differences method to investigate the impact and channels of industrial robots on firm innovation.

Findings

The authors find that the application of industrial robots increases firm innovation. Two possible channels are identified through which robots promote innovation: alleviation of financial constraints and the improvement of human capital. Further analysis shows that the effect of robots on innovation is more pronounced for firms that are highly dependent on external financing, belong to high-tech industries, import high-end robots, have insufficient supply of skilled labor and private firms (non-SOEs). The authors also find that industrial robots increase the firms' innovation quality and the marginal contribution of innovation to firms' total factor productivity.

Originality/value

This study provides big data evidence of the unintended positive consequences of industrial robots on firm innovation. The results are helpful to clarify the controversy of industrial robots. It also has important implications for government industrial policy making, firm innovation and human resource management.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 9 January 2024

Xiuyun Yang and Qi Han

The purpose of this study is to investigate whether the corporate environmental, social and governance (ESG) performance of enterprise is influenced by the enterprise digital…

1287

Abstract

Purpose

The purpose of this study is to investigate whether the corporate environmental, social and governance (ESG) performance of enterprise is influenced by the enterprise digital transformation. In addition, this study explains how enterprise digital transformation affects ESG performance.

Design/methodology/approach

The sample covers 4,646 nonfinancial companies listed on China’s A-share market from 2009 to 2021. The study adopts the fixed-effects multiple linear regression to perform the data analysis.

Findings

The study finds that enterprise digital transformation has a significant inverted U-shaped impact on ESG performance. Moderate digital transformation can improve enterprise ESG performance, whereas excessive digital transformation will bring new organizational conflicts and increase enterprise costs, which is detrimental to ESG performance. This inverted U-shaped effect is more pronounced in industrial cities, manufacturing industries and enterprises with less financing constraints and executives with financial backgrounds. Enterprise digital transformation mainly affects ESG performance by affecting the level of internal information communication and disclosure, the level of internal control and the principal-agent cost.

Practical implications

The government should take multiple measures to encourage enterprises to choose appropriate digital transformation based on their own production behaviors and development strategies, encourage them to innovate and upgrade their organizational management and development models in conjunction with digital transformation and guide them to use digital technology to improve ESG performance.

Social implications

This study shows that irrational digital transformation cannot effectively improve the ESG performance of enterprises and promote the sustainable development of the country. Enterprises should carry out reasonable digital transformation according to their own development needs and finally improve the green and sustainable development ability of enterprises and promote the sustainable development of society.

Originality/value

This study examines the relationship between enterprise digital transformation and ESG performance. Different from the linear relationship between the two in previous major studies, this study proves the inverse U-shaped relationship between enterprise digital transformation and ESG performance through mathematical theoretical model derivation and empirical test. This study also explores in detail how corporate digital transformation affects ESG performance, as well as discusses heterogeneity at the city, industry and firm levels. It is proposed that enterprises should take into account their own characteristics and carry out reasonable digital transformation according to their development needs.

Details

Sustainability Accounting, Management and Policy Journal, vol. 15 no. 2
Type: Research Article
ISSN: 2040-8021

Keywords

1 – 7 of 7