Search results

1 – 10 of over 1000
Article
Publication date: 25 July 2024

Reza Masoumzadeh, Mostafa Abbaszadeh and Mehdi Dehghan

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Abstract

Purpose

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Design/methodology/approach

First, the derivative of the temporal direction is discretized by a second-order linearized finite difference scheme where it conserves the energy stability of the mathematical model. Then, the isogeometric collocation (IGC) method is used to approximate the derivative of spacial direction. The IGC procedure can be applied on irregular physical domains. The IGC method is constructed based upon the nonuniform rational B-splines (NURBS). Each curve and surface can be approximated by the NURBS. Also, a map will be defined to project the physical domain to a simple computational domain. In this procedure, the partial derivatives will be transformed to the new domain by the Jacobian and Hessian matrices. According to the mentioned procedure, the first- and second-order differential matrices are built. Furthermore, the pseudo-spectral algorithm is used to derive the first- and second-order nodal differential matrices. In the end, the Greville Abscissae points are used to the collocation method.

Findings

In the numerical experiments, the efficiency and accuracy of the proposed method are assessed through two examples, demonstrating its performance on both rectangular and nonrectangular domains.

Originality/value

This research work introduces the IGC method as a simulation technique for the phase-field crystal model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Haitao Liu, Junfu Zhou, Guangxi Li, Juliang Xiao and Xucang Zheng

This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.

Abstract

Purpose

This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.

Design/methodology/approach

The trajectory scheduling method includes two steps. First, a G3 continuity local smoothing approach is proposed to smooth the toolpath. Then, considering the tool/joint motion and geometric error constraints, a jerk-continuous feedrate scheduling method is proposed to generate the trajectory.

Findings

The simulations and experiments are conducted on the hybrid robot TriMule-800. The simulation results demonstrate that this method is effectively applicable to machining trajectory scheduling for various parts and is computationally friendly. Moreover, it improves the robot machining speed and ensures smooth operation under constraints. The results of the S-shaped part machining experiment show that the resulting surface profile error is below 0.12 mm specified in the ISO standard, confirming that the proposed method can ensure the machining accuracy of the hybrid robot.

Originality/value

This paper implements an analytical local toolpath smoothing approach to address the non-high-order continuity problem of the toolpath expressed in G code. Meanwhile, the feedrate scheduling method addresses the segmented paths after local smoothing, achieving smooth and continuous trajectory generation to balance machining accuracy and machining efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 August 2024

He Cheng, Fandi Lin, Jing Wu and Tong Zhang

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Abstract

Purpose

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Design/methodology/approach

Flux harmonics and torque characteristics are analyzed by using finite element analysis. First, a suitable pole-slot combination is selected by comparison. Second, field modulation processes of DSPMHV machine are analyzed to identify the reason for high torque density. And it is compared with dual-side-PM (DSPM) machine to analyze flux harmonic and verify the flux concentrating effect of the Halbach array.

Findings

The permanent magnet (PM) field of the DSPM machine is approximately equal to the superposition of stator-PM field and rotor-PM field, which is the reason for high torque density. And the Halbach array can reduce flux leakage and increase the amplitude of main flux harmonics, then further improves torque. Improvement of torque can be achieved by choosing right pole-slot combination, adopting DSPM machine structure, reducing flux leakage and adopting field modulation principle.

Originality/value

The DSPMHV machine with split-tooth is proposed in this paper by combining the Halbach array with DSPM structure. This paper analyzes the bidirectional field modulation process, the reason for high torque density of the DSPM machine is obtained. Comparison with the DSPM machine verifies the flux concentrating effect of Halbach array. To alleviate the magnetic saturation in part of stator teeth, this paper proposes an improved DSPMHV machine with shaped auxiliary magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 September 2024

Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan and Fei Li

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid…

12

Abstract

Purpose

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.

Design/methodology/approach

An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.

Findings

The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.

Originality/value

It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2024

Odai Khamaiseh, Mohammad Alghababsheh, Saowanit Lekhavat and Mushfiqur Rahman

This study examines the impact of inter-organisational justice (i.e. distributive, procedural and interactional) in the buyer–supplier relationship on supply risk and, in turn, on…

Abstract

Purpose

This study examines the impact of inter-organisational justice (i.e. distributive, procedural and interactional) in the buyer–supplier relationship on supply risk and, in turn, on a firm’s marketing and financial performance.

Design/methodology/approach

A structured survey was administered both online and in-person to Jordan-based manufacturing companies. The 137 responses received were analysed using partial least structural equation modelling.

Findings

The study found that while establishing both procedural and interactional justice in the relationship has a negative impact on supply risk, promoting distributive justice, surprisingly, has no impact. Moreover, supply risk was found to be detrimental to the firm’s marketing and financial performance.

Research limitations/implications

This study considers only the direct role of inter-organisational justice in reducing supply risk. Future research could enhance our understanding of this role by exploring the underlying mechanisms and conditions that could govern it.

Practical implications

Managers can alleviate supply risk by ensuring procedural and interactional justice in the relationship through involving suppliers in the decision-making processes, consistently adhering to established procedures and communicating transparent and ample information.

Social implications

Addressing supply risk can help in maintaining community resilience and economic stability.

Originality/value

The study highlights inter-organisational justice as a new approach to mitigating supply risk. Moreover, by examining how supply risk can affect a firm’s marketing performance, it also highlights a new implication of supply risk. Furthermore, by exclusively examining the impact of supply risk on a firm’s financial performance, the study provides a more nuanced interpretation of the effect of supply risk and how it can be reduced.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 21 August 2024

Abdul Hakeem Waseel, Jianhua Zhang, Muhammad Usman Shehzad, Irshad Hussain Sarki and Muhammad Wajid Kamran

This study examines the link between the knowledge creation process, ambidextrous innovation, and competitive advantage. Further, this study also tested the moderating role of…

Abstract

Purpose

This study examines the link between the knowledge creation process, ambidextrous innovation, and competitive advantage. Further, this study also tested the moderating role of organizational agility on the relationship between the knowledge creation process and ambidextrous innovation.

Design/methodology/approach

The empirical study’s data were collected by surveying 306 respondents employed in 140 Pakistani Small and Medium Enterprises (SMEs). The questionnaire was designed according to the study’s requirements and was based on theoretical knowledge and findings from previous research on the knowledge-creation process, ambidextrous innovation, and competitive advantage. All hypotheses were tested using a structured regression method.

Findings

The study indicates that the knowledge creation process significantly impacts a firm’s competitive advantage. Additionally, this study demonstrates that ambidextrous innovation can moderate the relationship between the knowledge-creation process and competitive advantage.

Research limitations/implications

Future studies should examine mediating factors, such as organizational culture, leadership style, and industry characteristics, as well as moderating variables, such as environmental turbulence.

Practical implications

This study guides SME leaders on the importance of knowledge creation and ambidextrous innovation in achieving operational success and gaining a competitive advantage.

Originality/value

This study explores how the knowledge creation process directly and indirectly, enhances organizational capacity for competitive advantage through the mediating roles of ambidextrous innovation and the moderating role of organizational agility.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 4 September 2024

Richard Kadan and Jan Wium

Megaproject supply chains involve multiple layers of stakeholders, leading to complex relationships and risks. The role of social interactions within these networks is unexplored…

Abstract

Purpose

Megaproject supply chains involve multiple layers of stakeholders, leading to complex relationships and risks. The role of social interactions within these networks is unexplored. Therefore, an analysis of construction supply chain risk management from the perspective of social networks is essential to identify related stakeholders, their relationships and the social network risk factors.

Design/methodology/approach

About 65 risk factors, identified from literature and interviews, informed the development of a questionnaire for the study. Online questionnaires administered in Ghana and South Africa produced 120 valid responses. Feedback from the responses was ranked and assessed to determine the overall social network risk levels using the Normalised Mean and Fuzzy synthesis analysis methods.

Findings

About 24 risk factors were identified and classified into six groups: Client/Consultant-related, Community-related, Government-related, Industry Perception-related, Supplier-related and Stakeholder Opportunism. The top five social network risks identified include bribery, supplier monopoly, incomplete design teams, poor communication and lack of collaboration.

Practical implications

The study provides detailed evaluations of social network risks in Africa, and the findings will help in developing strategies to mitigate supply chain disruptions caused by these challenges.

Originality/value

This study contributes to the literature on supply chain risk management by offering context-specific insights into the social network perspective of megaprojects in Africa, which differs from those in developed countries.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 23 May 2023

Minggong Zhang, Xiaolong Xue, Ting Luo, Mengmeng Li and Xiaoling Tang

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a…

Abstract

Purpose

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a complexity perspective and develop an evaluation model using qualitative and quantitative methods. Case studies are carried out to verify the reliability of the evaluation model, thereby providing theoretical and practical guidance for CRMIP operations and maintenance (O&M).

Design/methodology/approach

Guided by the idea of complexity management, the evaluation indicators of CRMIP supportability are determined through literature analysis, actual O&M experience and expert interviews. A combination of qualitative and quantitative methods, consisting of sequential relationship analysis, entropy weighting, game theory and cloud model, is developed to determine the indicator weights. Finally, the evaluation model is used to evaluate the supportability of the Hong Kong–Zhuhai–Macao Bridge (HZMB), which tests the rationality of the model and reveals its supportability level.

Findings

The results demonstrate that CRMIPs' supportability is influenced by 6 guideline-level and 18 indicator-level indicators, and the priority of the influencing factors includes “organization,” “technology,” “system,” “human resources,” “material system,” and “funding.” As for specific indicators, “organizational objectives,” “organizational structure and synergy mechanism,” and “technical systems and procedures” are critical to CRMIPs' O&M supportability. The results also indicate that the supportability level of the HZMB falls between good and excellent.

Originality/value

Under the guidance of complexity management thinking, this study proposes a supportability evaluation framework based on the combined weights of game theory and the cloud model. This study provides a valuable reference and scientific judgment for the health and safety of CRMIPs' O&M.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 August 2024

Guosheng Deng, Wei Zhang, Zhitao Wu, Minglei Guan and Dejin Zhang

Step length is a key factor for pedestrian dead reckoning (PDR), which affects positioning accuracy and reliability. Traditional methods are difficult to handle step length…

Abstract

Purpose

Step length is a key factor for pedestrian dead reckoning (PDR), which affects positioning accuracy and reliability. Traditional methods are difficult to handle step length estimation of dynamic gait, which have larger error and are not adapted to real walking. This paper aims to propose a step length estimation method based on frequency domain feature analysis and gait recognition for PDR, which considers the effects of real-time gait.

Design/methodology/approach

The new step length estimation method transformed the acceleration of pedestrians from time domain to frequency domain, and gait characteristics of pedestrians were obtained and matched with different walking speeds.

Findings

Many experiments are conducted and compared with Weinberg and Kim models, and the results show that the average errors of the new method were improved by about 2 meters to 5 meters. It also shows that the proposed method has strong stability and device robustness and meets the accuracy requirements of positioning.

Originality/value

A sliding window strategy used in fast Fourier transform is proposed to implement frequency domain analysis of the acceleration, and a fast adaptive gait recognition mechanism is proposed to identify gait of pedestrians.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 20 August 2024

Liang Chen, Liyi Xiong, Fang Zhao, Yanfei Ju and An Jin

The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system. Through voiceprint technology, the sounds emitted by…

Abstract

Purpose

The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system. Through voiceprint technology, the sounds emitted by the transformer can be monitored in real-time, thereby achieving real-time monitoring of the transformer’s operational status. However, the environment surrounding power transformers is filled with various interfering sounds that intertwine with both the normal operational voiceprints and faulty voiceprints of the transformer, severely impacting the accuracy and reliability of voiceprint identification. Therefore, effective preprocessing steps are required to identify and separate the sound signals of transformer operation, which is a prerequisite for subsequent analysis.

Design/methodology/approach

This paper proposes an Adaptive Threshold Repeating Pattern Extraction Technique (REPET) algorithm to separate and denoise the transformer operation sound signals. By analyzing the Short-Time Fourier Transform (STFT) amplitude spectrum, the algorithm identifies and utilizes the repeating periodic structures within the signal to automatically adjust the threshold, effectively distinguishing and extracting stable background signals from transient foreground events. The REPET algorithm first calculates the autocorrelation matrix of the signal to determine the repeating period, then constructs a repeating segment model. Through comparison with the amplitude spectrum of the original signal, repeating patterns are extracted and a soft time-frequency mask is generated.

Findings

After adaptive thresholding processing, the target signal is separated. Experiments conducted on mixed sounds to separate background sounds from foreground sounds using this algorithm and comparing the results with those obtained using the FastICA algorithm demonstrate that the Adaptive Threshold REPET method achieves good separation effects.

Originality/value

A REPET method with adaptive threshold is proposed, which adopts the dynamic threshold adjustment mechanism, adaptively calculates the threshold for blind source separation and improves the adaptability and robustness of the algorithm to the statistical characteristics of the signal. It also lays the foundation for transformer fault detection based on acoustic fingerprinting.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 1000