Search results

1 – 10 of 944
Article
Publication date: 2 September 2019

Ahmed E. Abouelregal and Ashraf M. Zenkour

The purpose of this paper is to investigate the response of viscoelastic beam resting on a Winkler’s foundation and subjected to an axial initial stress, thermal load and an…

Abstract

Purpose

The purpose of this paper is to investigate the response of viscoelastic beam resting on a Winkler’s foundation and subjected to an axial initial stress, thermal load and an ultra-fast laser heating.

Design/methodology/approach

In this introduced model, the authors considered the interaction design between the vertical springs only. The beam is considered as an Euler–Bernoulli beam exposed to sinusoidal varying heat.

Findings

The deflection and the temperature response of the beam are obtained using Laplace transform and its numerical inversion method. In the numerical example, the effect of the laser pulse duration and viscous damping coefficient on the transverse displacement response of the beam is discussed. The thermoelastic interactions of the beam due to the axial load are also illustrated.

Originality/value

Physical views of this paper may be useful for the design and vibration analysis of micro-resonators and micro-sensors applications. In addition, the utilization of laser-ultrasonic technology has found wide applications in lab environments, and in an expanding number of cases, it is extending to the industrial field and realm application.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 August 2015

Li Wang, Mengwu Guo and Hongzhi Zhong

– The purpose of this paper is to acquire strict upper and lower bounds on quantities of slender beams on Winkler foundation in finite element analysis.

Abstract

Purpose

The purpose of this paper is to acquire strict upper and lower bounds on quantities of slender beams on Winkler foundation in finite element analysis.

Design/methodology/approach

It leans on the dual analysis wherein the constitutive relation error (CRE) is used to perform goal-oriented error estimation. Due to the coupling of the displacement field and the stress field in the equilibrium equations of the beam, the prolongation condition for the stress field which is the key ingredient of CRE estimation is not directly applicable. To circumvent this difficulty, an approximate problem and the solution thereof are introduced, enabling the CRE estimation to proceed. It is shown that the strict bounding property for CRE estimation is preserved and strict bounds of quantities of the beam are obtainable thereafter.

Findings

Numerical examples are presented to validate the strict upper and lower bounds for quantities of beams on elastic foundation by dual analysis.

Research limitations/implications

This paper deals with one-dimensional (1D) beams on Winkler foundation. Nevertheless, the present work can be naturally extended to analysis of shells and 2D and 3D reaction-diffusion problems for future research.

Originality/value

CRE estimation is extended to analysis of beams on elastic foundation by a decoupling strategy; strict upper bounds of global energy norm error for beams on elastic foundation are obtained; strict bounds of quantities for beams on elastic foundation are also obtained; unified representation and corresponding dual analysis of various quantities of the beam are presented; rigorous derivation of admissible stresses for beams is given.

Article
Publication date: 7 February 2019

Bijan Mohamadi, S. Ali Eftekhari and Davood Toghraie

The purpose of this paper is to investigate nonlinear vibrations of triple-walled carbon nanotubes buried within Pasternak foundation carrying viscous fluids.

Abstract

Purpose

The purpose of this paper is to investigate nonlinear vibrations of triple-walled carbon nanotubes buried within Pasternak foundation carrying viscous fluids.

Design/methodology/approach

Considering the geometry of nanotubes, the governing equations were initially derived using Timoshenko and modified couple stress theories and by taking into account Von-Karman expressions. Then, by determining boundary conditions, type of fluid motion, Knudsen number and, ultimately, fluid viscosity, the principal equation was solved using differential quadrature method, and linear and nonlinear nanotube frequencies were calculated.

Findings

The results indicated that natural frequency is decreased as the fluid velocity and aspect ratio increase. Moreover, as the aspect ratio is increased, the results converge for simple and fixed support boundary conditions, and the ratio of nonlinear to linear frequencies approaches. Natural frequency of vibrations and critical velocity increase as Pasternak coefficient and characteristic length increase. As indicated by the results, by assuming a non-uniform velocity for the fluid and a slip boundary condition at Kn = 0.05, reductions of 10.714 and 28.714% were observed in the critical velocity, respectively. Moreover, the ratio of nonlinear to linear base frequencies decreases as the Winkler and Pasternak coefficients, maximum deflection of the first wall and characteristic length are increased in couple stress theory.

Originality/value

This paper is a numerical investigation of nonlinear vibration analysis for triple-walled carbon nanotubes conveying viscous fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2020

Rajendran Selvamani, M. Mahaveer Sree Jayan and Farzad Ebrahimi

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting…

Abstract

Purpose

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix.

Design/methodology/approach

A mathematical model is developed for the analytical study of nonlinear ultrasonic waves in a MFT elastic armchair single walled carbon nanotube rested on polymer matrix using Euler beam theory. The analytical formulation is developed based on Eringen’s nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analysed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations.

Findings

From the literature survey, it is evident that the analytical formulation of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix is not discussed by any researchers. So, in this paper the analytical solutions of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix are studied. Parametric studies is carried out to scrutinize the influence of the nonlocal scaling, magneto-electro-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter and tube geometrical parameters have significant effects on dimensionless frequency of nanotubes.

Originality/value

This paper contributes the analytical model to find the solution of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix. It is observed that the increase in the foundation constants raises the stiffness of the medium and the structure is able to attain higher frequency once the edge condition is C-C followed by S-S. Further, it is noticed that the natural frequency is arrived below 1% in both local and nonlocal boundary conditions in the presence of temperature coefficients. Also, it is found that the density and Poisson ratio variation affects the natural frequency with below 2%. The results presented in this study can provide mechanism for the study and design of the nano devices such as component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro--magneto-mechanical systems that make use of the wave propagation properties of ASWCNTs embedded on polymer matrix.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 June 2023

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Design/methodology/approach

This study is carried out using a one-dimensional beam element with three rotational and three translational degrees of freedom based on the finite element method. MATLAB programming is used to perform the free vibration analysis of the rigid pavement.

Findings

Cyclic frequency and their corresponding mode shapes were determined. It has been investigated how cyclic frequency changes as a result of variations in the thickness, span length of pavement, shear modulus, modulus of subgrade, different boundary conditions and element discretization. Thickness of the pavement and span length has greater effect on the cyclic frequency. Maximum increase of 29.7% is found on increasing the thickness, whereas the cyclic frequency decreases by 63.49% on increasing span length of pavement.

Research limitations/implications

The pavement's free vibration is the sole subject of the current investigation. This study limits for the preliminary design phase of rigid pavements, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique, mesh-free technique on reinforced concrete pavements or jointed concrete pavements.

Originality/value

The finite element approach adopted in this paper involves six degrees of freedom for each node. Furthermore, to the best of the authors’ knowledge, no prior study has done seven separate parametric investigations on the modal analysis of rigid pavement resting on two-parameter soil.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 1985

S. Alliney, A. Strozzi and A. Tralli

A finite element model for the elastohydrodynamic lubrication problem is presented. A coupling between the hydrodynamic equation and the foundation compliance equation is…

Abstract

A finite element model for the elastohydrodynamic lubrication problem is presented. A coupling between the hydrodynamic equation and the foundation compliance equation is performed, then the resulting functional problem is given an ‘extended’ variational formulation. Some preliminary numerical results are also presented.

Details

Engineering Computations, vol. 2 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 12 April 2023

Mehdi Ranjbar-Roeintan

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon…

64

Abstract

Purpose

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon nanotubes (CNTs).

Design/methodology/approach

Based on the first-order shear deformation plate theory, the strain energy related to elastic foundations is added to system strain energy. Using separation of variables and Lagrangian generalized equations, the nonlinear and time-dependent motion equations are extracted.

Findings

Verification examples are fulfilled to prove the precision and effectiveness of the presented model. The impact outputs illustrate the effects of various distribution of CNTs porosity functions along the plate thickness direction, Winkler–Pasternak elastic foundations and different boundary conditions on the Hertz contact law, the plate center displacement, impactor displacement and impactor velocity.

Originality/value

This paper investigates the effect of Winkler–Pasternak elastic foundations on the functionally graded porous plate reinforced with agglomerated CNTs under impact loading.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 May 2022

Guangming Fu, Yuhang Tuo, Baojiang Sun, Chen Shi and Jian Su

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying…

Abstract

Purpose

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying thickness resting on a double-parameter foundation.

Design/methodology/approach

The bending of plates with linearly varying thickness resting on a double-parameter foundation is analyzed by using the GITT for six combinations of clamped, simply-supported and free boundary conditions under linearly varying loads. The governing equation of plate bending is integral transformed in the uniform-thickness direction, resulting in a linear system of ordinary differential equations in the varying thickness direction that is solved by a fourth-order finite difference method. Parametric studies are performed to investigate the effects of boundary conditions, foundation coefficients and geometric parameters of variable thickness plates on the bending behavior.

Findings

The proposed hybrid analytical-numerical solution is validated against a fourth-order finite difference solution of the original partial differential equation, as well as available results in the literature for some particular cases. The results show that the foundation coefficients and the aspect ratio b/a (width in the y direction to height of plate in the x direction) have significant effects on the deflection of rectangular plates.

Originality/value

The present GITT method can be applied for bending problems of rectangular thin plates with arbitrary thickness variation along one direction under different combinations of loading and boundary conditions.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2019

Soheil Oveissi, Davood Toghraie, S. Ali Eftekhari and Ali J. Chamkha

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model…

Abstract

Purpose

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model is used. Also, the surface effects, small-size effects of the both fluid and structure and two different elastic mediums viscoelastic and Pasternak elastic are investigated.

Design/methodology/approach

To consider the nano-scale for the CNT, the strain-inertia gradient theory is used and to solve the governing equation of motion for the system, the Galerkin’s method is used. The effect of the flow velocity, aspect ratio, characteristic lengths of the mentioned theory, effects of Knudsen number and effects of the Winkler, the Pasternak elastic and the viscoelastic medium on the frequencies and stabilities of the system are studied. The effects of the above parameters on the vibrational behavior are investigated both separately and simultaneously.

Findings

The results show that the critical flow velocity value is increased as the aspect ratio, characteristic lengths, Winkler modulus, shear and damping factors increase. Also, the critical flow velocity is increased by considering the surface effects. In addition, the consequence of increase in the nano-flow-size effects (Knudsen number) is decreasing the critical flow velocity. Moreover, it can be observed that the effect of the shear factor on increasing the critical flow velocity is different from the rest of parameters.

Originality/value

Use of Timoshenko and modified couple stress theories and taking into account Von-Karman expressions for investigating the nonlinear vibrations of triple-walled CNTs buried within Pasternak foundation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 944