Search results

1 – 10 of over 2000
Article
Publication date: 1 March 1995

H.A. Machado and R.M. Cotta

The two‐dimensional steady boundary layer equations, forsimultaneous heat and fluid flow within ducts, are handled through thegeneralized integral transform technique. The…

Abstract

The two‐dimensional steady boundary layer equations, for simultaneous heat and fluid flow within ducts, are handled through the generalized integral transform technique. The momentum and energy equations are integral transformed by eliminating the transversal coordinate and reducing the PDE’s into an infinite system of coupled non‐linear ordinary differential equations for the transformed potentials. An adaptively truncated version of this ODE system is numerically handled through well known initial value problem solvers, with automatic precision control procedures. The explicit inversion formulae are then recalled to provide analytic expressions for velocity and temperature fields and related quantities of practical interest. Typical examples are presented in order to illustrate the hybrid numerical analytical approach and its convergence behaviour.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 May 2022

Guangming Fu, Yuhang Tuo, Baojiang Sun, Chen Shi and Jian Su

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying…

Abstract

Purpose

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying thickness resting on a double-parameter foundation.

Design/methodology/approach

The bending of plates with linearly varying thickness resting on a double-parameter foundation is analyzed by using the GITT for six combinations of clamped, simply-supported and free boundary conditions under linearly varying loads. The governing equation of plate bending is integral transformed in the uniform-thickness direction, resulting in a linear system of ordinary differential equations in the varying thickness direction that is solved by a fourth-order finite difference method. Parametric studies are performed to investigate the effects of boundary conditions, foundation coefficients and geometric parameters of variable thickness plates on the bending behavior.

Findings

The proposed hybrid analytical-numerical solution is validated against a fourth-order finite difference solution of the original partial differential equation, as well as available results in the literature for some particular cases. The results show that the foundation coefficients and the aspect ratio b/a (width in the y direction to height of plate in the x direction) have significant effects on the deflection of rectangular plates.

Originality/value

The present GITT method can be applied for bending problems of rectangular thin plates with arbitrary thickness variation along one direction under different combinations of loading and boundary conditions.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Renato M Cotta, Carolina Palma Naveira-Cotta and Diego C. Knupp

The purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by…

Abstract

Purpose

The purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis.

Design/methodology/approach

The original nonlinear boundary condition coefficients in the problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the transformed ordinary differential system. The nonlinear eigenvalues computation may also be accomplished by rewriting the corresponding transcendental equation as an ordinary differential system for the eigenvalues, which is then simultaneously solved with the transformed potentials.

Findings

An application on one-dimensional transient diffusion with nonlinear boundary condition coefficients is selected for illustrating some important computational aspects and the convergence behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution with a linear eigenvalue problem basis is also presented and implemented.

Originality/value

This novel approach can be further extended to various classes of nonlinear convection-diffusion problems, either already solved by the GITT with a linear coefficients basis, or new challenging applications with more involved nonlinearities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1992

R. SERFATY and R.M. COTTA

A hybrid numerical‐analytical approach, based on recent developments in the generalized integral transform technique, is presented for the solution of a class of non‐linear…

Abstract

A hybrid numerical‐analytical approach, based on recent developments in the generalized integral transform technique, is presented for the solution of a class of non‐linear transient convection‐diffusion problems. The original partial differential equation is integral transformed into a denumerable system of coupled non‐linear ordinary differential equations, which is numerically solved for the transformed potentials. The hybrid analysis convergence is illustrated by considering the one‐dimensional non‐linear Burgers equation and numerical results are presented for increasing truncation orders of the infinite ODE system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Diego C. Knupp, Carolina Palma Naveira-Cotta, Adrian Renfer, Manish K. Tiwari, Renato M Cotta and Dimos Poulikakos

The purpose of this paper is to employ the Generalized Integral Transform Technique in the analysis of conjugated heat transfer in micro-heat exchangers, by combining this hybrid…

Abstract

Purpose

The purpose of this paper is to employ the Generalized Integral Transform Technique in the analysis of conjugated heat transfer in micro-heat exchangers, by combining this hybrid numerical-analytical approach with a reformulation strategy into a single domain that envelopes all of the physical and geometric sub-regions in the original problem. The solution methodology advanced is carefully validated against experimental results from non-intrusive techniques, namely, infrared thermography measurements of the substrate external surface temperatures, and fluid temperature measurements obtained through micro Laser Induced Fluorescence.

Design/methodology/approach

The methodology is applied in the hybrid numerical-analytical treatment of a multi-stream micro-heat exchanger application, involving a three-dimensional configuration with triangular cross-section micro-channels. Space variable coefficients and source terms with abrupt transitions among the various sub-regions interfaces are then defined and incorporated into this single domain representation for the governing convection-diffusion equations. The application here considered for analysis is a multi-stream micro-heat exchanger designed for waste heat recovery and built on a PMMA substrate to allow for flow visualization.

Findings

The methodology here advanced is carefully validated against experimental results from non-intrusive techniques, namely, infrared thermography measurements of the substrate external surface temperatures and fluid temperature measurements obtained through Laser Induced Fluorescence. A very good agreement among the proposed hybrid methodology predictions, a finite elements solution from the COMSOL code, and the experimental findings has been achieved. The proposed methodology has been demonstrated to be quite flexible, robust, and accurate.

Originality/value

The hybrid nature of the approach, providing analytical expressions in all but one independent variable, and requiring numerical treatment at most in one single independent variable, makes it particularly well suited for computationally intensive tasks such as in optimization, inverse problem analysis, and simulation under uncertainty.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2018

Fabio Andrade Pontes, Emanuel Negrão Macêdo, Clauderino da Silva Batista, João Alves de Lima and João Nazareno Nonato Quaresma

The purpose of this study is to show the procedure, application and main features of the hybrid numerical-analytical approach known as generalized integral transform technique by…

Abstract

Purpose

The purpose of this study is to show the procedure, application and main features of the hybrid numerical-analytical approach known as generalized integral transform technique by using it to study magnetohydrodynamic flow of electrically conductive Newtonian fluids inside flat parallel-plate channels subjected to a uniform and constant external magnetic field.

Design/methodology/approach

The mathematical formulation of the analyzed problem is given in terms of a streamfunction, obtained from the Navier–Stokes and energy equations, by considering steady state laminar and incompressible flow and constant physical properties.

Findings

Convergence analyses are performed and presented to illustrate the consistency of the integral transformation technique. The results for the velocity and temperature fields are generated and compared with those in the literature as a function of the main governing parameters.

Originality/value

A detailed analysis of the parametric sensibility of the main dimensionless parameters, such as the Reynolds number, Hartmann number, Eckert number, Prandtl number and electrical parameter, for some typical situations is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1996

Alcino Resende Almeida and Renato Machado Cotta

Different possibilities for the enhancement of convergence rates ineigenfunction expansions are investigated in the realm of integral transformsolutions for partial differential…

Abstract

Different possibilities for the enhancement of convergence rates in eigenfunction expansions are investigated in the realm of integral transform solutions for partial differential equations. A representative parabolic problem is chosen to illustrate two schemes and their combinations; a filtering technique and an integral balance approach. Numerical results are presented to confirm the relative merits in each proposed procedure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1997

D.M. Brown, C.A.C. Santos, R.M. Cotta and S. Kakaç

Presents a novel theoretical approach, based on extension of ideas associated with the generalized integral transform technique, for obtaining accurate analytic solutions for…

670

Abstract

Presents a novel theoretical approach, based on extension of ideas associated with the generalized integral transform technique, for obtaining accurate analytic solutions for fully developed steady forced convection inside circular ducts with turbulent flow and constant wall surface temperature conditions. Within the temperature field, reports the thermal response of the fluid in terms of hybrid solutions for bulk fluid temperature and Nusselt number distributions along the thermal entrance region of the duct. Further, in assessing the accuracy and validity of the theoretical work, critically examines predicated analytical solutions of thermally developed Nusselt numbers and compares them with results from reliable empirical correlations of the open literature. For the investigated cases, satisfactory agreement prevailed between the theoretically and empirically derived heat transfer parameters, exhibiting a maximum difference of 9.58 per cent for the range of system variables analysed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Beatriz Machado dos Santos, Ludimila Silva Salles de Sá and Jian Su

The purpose of this work is to propose the generalized integral transform technique (GITT) for the investigation of two-dimensional steady-state natural convection in a horizontal…

Abstract

Purpose

The purpose of this work is to propose the generalized integral transform technique (GITT) for the investigation of two-dimensional steady-state natural convection in a horizontal annular sector containing heat-generating porous medium.

Design/methodology/approach

GITT was used to investigate steady-state natural convection in a horizontal annular sector containing heat-generating porous medium. The governing equations in stream function formulation are integral transformed in the azimuthal direction, with the resulting system of nonlinear ordinary differential equations numerically solved by finite difference method. The GITT solutions are validated by comparison with fully numerical solutions by finite difference method, showing excellent agreement and convergence with low computational cost.

Findings

The effects of increasing Rayleigh number are more noticeable in stream function, whereas less significant for temperature. With decreasing annular sector angle from π to π/6, a reduction in the maximum temperature and stream function was noticed. While the two counter-rotating vortical structure is common for all annular sector angles investigated, the relative size of the two vortices varies with decreasing sector angle, with the vortex near the outer radius of the cavity becoming dominant. The annular sector angle affects strongly the maximum temperature and the partition of heat transfer on the inner and outer surfaces of the annular sector with heat-generating porous medium.

Originality/value

The strong effects of the annular sector angle on natural convection in annular sectors containing heat-generating porous medium are investigated for the first time. The proposed hybrid analytical–numerical approach can be applied in other convection problems in cylindrical or annular configurations, with or without porous medium. It shows potential for applications in practical convection problems in the nuclear and other industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2011

Roseane L. Silva, João N.N. Quaresma, Carlos A.C. Santos and Renato M. Cotta

The purpose of this paper is to provide an analysis of two‐dimensional laminar flow in the entrance region of wavy wall ducts as obtained from the solution of the steady…

Abstract

Purpose

The purpose of this paper is to provide an analysis of two‐dimensional laminar flow in the entrance region of wavy wall ducts as obtained from the solution of the steady Navier‐Stokes equations for incompressible flow.

Design/methodology/approach

The study is undertaken by application of the generalized integral transform technique in the solution of the steady Navier‐Stokes equations for incompressible flow. The streamfunction‐only formulation is adopted, and a general filtering solution that adapts to the irregular contour is proposed to enhance the convergence behavior of the eigenfunction expansion.

Findings

A few representative cases are considered more closely in order to report some numerical results illustrating the eigenfunction expansions convergence behavior. The product friction factor‐Reynolds number is also computed and compared against results from discrete methods available in the literature for different Reynolds numbers and amplitudes of the wavy channel.

Research limitations/implications

The proposed methodology is fairly general in the analysis of different channel profiles, though the reported results are limited to the wavy channel configuration. Future work should also extend the analysis to geometries represented in the cylindrical coordinates with longitudinally variable radius.

Practical implications

The error‐controlled converged results provide reliable benchmark results for the validation of numerical results from computational codes that address the solution of the Navier‐Stokes equations in irregular geometries.

Originality/value

Although the hybrid methodology is already known in the literature, the results here presented are original and further challenges application of the integral transform method in the solution of the Navier‐Stokes equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000