Search results

1 – 10 of 273
Article
Publication date: 29 February 2024

Yuhan Tang, Yuedong Wang, Jiayu Liu, Boya Tian, Qi Dong, Ziwei He and Jiayi Wen

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in…

Abstract

Purpose

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in engineering, a modification of it is proposed for the structure made of S355 steel (commonly used in high-speed electric multiple units (EMUs) bogie frame).

Design/methodology/approach

The modification is made based on Deutscher Verband für Schweißen und verwandte Verfahren e. V. (DVS) 1612 standard and the γ-P-S-N curve, with consideration of the fatigue evaluation requirements of different survival rates and confidence levels. The verification of the modification is performed for three welded joints and for the comparison with the experimental data.

Findings

The results indicate that the design survival rate, the design safety margin and the fatigue stress evaluation of welded joint types are all improved by using the modified diagram.

Originality/value

There are relatively few studies on modifying octagonal Goodman–Smith fatigue limit diagram. In this paper, a modified diagram is proposed and applied in order to ensure the safety and durability of key welded structures of rail vehicles.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1067

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 November 2023

Chunliang Niu

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design…

Abstract

Purpose

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design stage needs to be studied.

Design/methodology/approach

Based on the structural stress theory, a design method of the marine engineering equipment welded joints with better fatigue performance is proposed. The effectiveness of the method is demonstrated through the simulation analysis and fatigue test of typical marine engineering equipment welded joints.

Findings

Methods based on the theoretical advantages of structural stress and the principle of ensuring that the welded joint has a low degree of stress concentration.

Originality/value

The design method of marine engineering equipment welded joints proposed in this study provides a set of operable design routes for technicians, which can better meet the needs of engineering applications.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 August 2023

Dalei Zhang, Xinwei Zhang, Enze Wei, Xiaohui Dou and Zonghao He

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy…

Abstract

Purpose

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy substance modification.

Design/methodology/approach

The microstructure and chemical state of the superhydrophobic film layer were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, three-dimensional morphology, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. The influence of the superhydrophobic film layer on the corrosion resistance of TA2-welded joints was investigated using classical electrochemical testing methods.

Findings

The characterization results showed that the super hydrophobic TiO2 ceramic membrane was successfully constructed on the surface of the TA2-welded joint, and the construction of the super hydrophobic film greatly improved the corrosion resistance of the TA2-welded joint.

Originality/value

The superhydrophobic TiO2 ceramic membrane has excellent corrosion resistance. The micro nanostructure in the superhydrophobic film can intercept air to form an air layer to prevent the corrosion medium from contacting the surface, thus, improving the corrosion resistance of the sample.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 January 2024

Shengfu Xue, Zhengping He, Bingzhi Chen and Jianxin Xu

This study investigates the fitting techniques for notch fatigue curves, seeking a more reliable method to predict the lifespan of welded structures.

Abstract

Purpose

This study investigates the fitting techniques for notch fatigue curves, seeking a more reliable method to predict the lifespan of welded structures.

Design/methodology/approach

Building on the fatigue test results of butt and cruciform joints, this research delves into the selection of fitting methods for the notch fatigue curve of welded joints. Both empirical formula and finite element methods (FEMs) were employed to assess the notch stress concentration factor at the toe and root of the two types of welded joints. Considering the mean stress correction and weld misalignment coefficients, the notch fatigue life curves were established using both direct and indirect methods.

Findings

An engineering example was employed to discern the differences between the direct and indirect approaches. The findings highlight the enhanced reliability of the indirect method for fitting the fatigue life curve.

Originality/value

While the notch stress approach is extensively adopted due to its accurate prediction of component fatigue life, most scholars have overlooked the importance of its curve fitting methods. Existing literature scantily addresses the establishment of these curves. This paper offers a focused examination of fatigue curve fitting techniques, delivering valuable perspectives on method selection.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2023

Anand Sharma, Sourabh Shukla, Manish Thombre, Ankur Bansod and Sachin Untawale

The purpose of this study is to examine the effects of sensitization on the metallurgical characteristics of weld joints made up of austenitic stainless steel (AISI 316L) and…

Abstract

Purpose

The purpose of this study is to examine the effects of sensitization on the metallurgical characteristics of weld joints made up of austenitic stainless steel (AISI 316L) and ferritic stainless steel (AISI 430), using the gas tungsten arc welding (GTAW) process with ER316L filler wires.

Design/methodology/approach

A non-consumable tungsten electrode with a diameter of 1.6 mm was used during the GTAW procedure. The filler wire, ER316L, was selected based on the recommendation provided in literature. To explore the interconnections among the structure and properties of these weldments, the techniques including scanning electron microscopy and optical analysis have been used. In addition, the sensitization behaviour of the weldments was investigated using the double loop electrochemical potentio-kinetic reactivation (DLEPR) test.

Findings

Microstructural analyses revealed the occurrences of coarsened grains with equiaxed columnar grains and migrating grain boundaries in the weld zone. The results of the DLEPR test demonstrated that heat affected zone (HAZ) of AISI 430 was more susceptible to sensitization than HAZ of AISI 316L. Microstructure analysis also revealed the precipitation of large amounts of chromium carbide at the grain boundaries region of AISI 430 welded steel, causing more sensitization and, as a result, more failure or breaking at the side of AISI 430 weld in the dissimilar weldment of AISI 316L–AISI 430.

Originality/value

The present work has been carried out to determine the appropriate welding conditions for joining AISI 316L and AISI 430, as well as the metallurgical properties of the dissimilar weldment formed between AISI 316L and AISI 430. Owing to the difficulties in measuring the performance of these types of dissimilar joints given their unique mechanical and microstructural characteristics, research on the subject is limited.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 August 2023

Yingshuang Liu, Ran Liu, Dalei Zhang, Shaohua Xing, Xiaohui Dou, Xinwei Zhang and Zonghao He

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Abstract

Purpose

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Design/methodology/approach

The experiment uses a combination of array electrodes and simulation.

Findings

It is found that when the weld reinforcement exists, the corrosion tendency of both ends of the weld metal is greater than that of other parts of the welded joint due to the influence of high turbulence kinetic energy and shear stress. The presence of weld reinforcement heights makes the fluid behind it fluctuate greatly. The passivation films of both the base metal (BM) at the rear and the heat-affected zone (HAZ) are more prone to corrosion than those of the front BM and HAZ, and the passivation film is rougher.

Originality/value

The combination of test and simulation was used to explore the influence of electrochemical and hydrodynamic factors on the corrosion behaviour of titanium alloy-welded joints when welding residual height existed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 273