Search results

1 – 10 of 10
Article
Publication date: 28 August 2024

Guosheng Deng, Wei Zhang, Zhitao Wu, Minglei Guan and Dejin Zhang

Step length is a key factor for pedestrian dead reckoning (PDR), which affects positioning accuracy and reliability. Traditional methods are difficult to handle step length…

Abstract

Purpose

Step length is a key factor for pedestrian dead reckoning (PDR), which affects positioning accuracy and reliability. Traditional methods are difficult to handle step length estimation of dynamic gait, which have larger error and are not adapted to real walking. This paper aims to propose a step length estimation method based on frequency domain feature analysis and gait recognition for PDR, which considers the effects of real-time gait.

Design/methodology/approach

The new step length estimation method transformed the acceleration of pedestrians from time domain to frequency domain, and gait characteristics of pedestrians were obtained and matched with different walking speeds.

Findings

Many experiments are conducted and compared with Weinberg and Kim models, and the results show that the average errors of the new method were improved by about 2 meters to 5 meters. It also shows that the proposed method has strong stability and device robustness and meets the accuracy requirements of positioning.

Originality/value

A sliding window strategy used in fast Fourier transform is proposed to implement frequency domain analysis of the acceleration, and a fast adaptive gait recognition mechanism is proposed to identify gait of pedestrians.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 September 2024

Pengkun Cheng, Juliang Xiao, Wei Zhao, Yangyang Zhang, Haitao Liu and Xianlei Shan

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and…

Abstract

Purpose

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and integrating external grating sensors with motor encoders for real-time error compensation.

Design/methodology/approach

Initially, a spherical coordinate system is established using one linear and two circular grating sensors. This system enables direct acquisition of the moving platform’s position in the hybrid robot. Subsequently, during the coarse interpolation stage, the motor command for the next interpolation point is dynamically updated using error data from external grating sensors and motor encoders. Finally, fuzzy proportional integral derivative (PID) control is applied to maintain robot stability post-compensation.

Findings

Experiments were conducted on the TriMule-600 hybrid robot. The results indicate that the following errors of the five grating sensors are reduced by 94%, 93%, 80%, 75% and 88% respectively, after compensation. Using the fourth drive joint as an example, it was verified that fuzzy adaptive PID control performs better than traditional PID control.

Practical implications

The proposed online error compensation strategy significantly enhances the positional accuracy of the robot end, thereby improving the actual processing quality of the workpiece.

Social implications

This method presents a technique for achieving online error compensation in hybrid robots, which promotes the advancement of the manufacturing industry.

Originality/value

This paper proposes a cost-effective and practical method for online error compensation in hybrid robots using grating sensors, which contributes to the advancement of hybrid robot technology.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 September 2024

Wei Du and Yiqin Wang

The widespread application of smart technologies in services not only brings efficiency and convenience to consumers but also inevitably comes with negative effects. Therefore…

Abstract

Purpose

The widespread application of smart technologies in services not only brings efficiency and convenience to consumers but also inevitably comes with negative effects. Therefore, this article aims to illustrate the impact of privacy invasion on consumers' intention to use smart services. Using distrust as a mediating variable, compare two different modes of interaction between voice and text, and study the positive impact of privacy commitment. This study aims to provide recommendations for smart service providers to make the consumer experience better.

Design/methodology/approach

This paper adopts an experimental approach, with data collection and hypothesis analysis by designing four different experiments.

Findings

The results show that the negative impact of privacy invasion on consumers' intention to use smart services is moderated by privacy commitments and interaction modes. This article verifies the mediating effect of distrust on consumers' intention to use when privacy invasion occurs and verifies the moderating effect of the interaction modes by comparing voice interaction with text interaction and demonstrates that text interaction mode will attenuate the mediating role of distrust in the path in privacy invasion. Besides, it also indicates that privacy commitments can moderate the relationship between privacy invasion’s effect on distrust and intention to use.

Originality/value

Focusing on privacy invasion, this study explores consumers' intention to use smart services, compares the two interaction modes of voice and text to explore their moderating effects, deeply explores consumer psychology and studies the mediating role of distrust and the moderating role of privacy commitment.

Details

Journal of Service Theory and Practice, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-6225

Keywords

Article
Publication date: 17 September 2024

Wei Chen, Mingyu Yu, Yong Wang, Xuteng Lu and Jia Hou

Urban villages are prevalent informal settlements within Chinese cities, arising from urban expansion. These areas frequently face systematic demolition during urban renewal due…

Abstract

Purpose

Urban villages are prevalent informal settlements within Chinese cities, arising from urban expansion. These areas frequently face systematic demolition during urban renewal due to their disorderly layout and outdated appearance. Urban village renovation (UVR) entails balancing diverse interests and navigating complex conflicts, particularly within China’s dual property rights system encompassing urban and rural land. The purpose of this study is to avoid the fierce interest conflict of UVR.

Design/methodology/approach

This study utilized the theoretical framework of value co-destruction. Initially, text mining and literature analysis were employed to identify concept nodes and interaction relationships. Subsequently, the structural equation model (SEM) was used to verify the causal model. Finally, the fuzzy cognitive map (FCM) was developed to dynamically simulate value co-destruction scenarios within UVR across various hypothetical situations.

Findings

The concept nodes influencing value co-destruction in UVR form a complex system with multiple levels. This includes three cause nodes and one result node. Among these, actor-to-actor emerges as a primary and underlying cause influencing value co-destruction in these projects. Furthermore, strategies for UVR should prioritize integrated interventions that enhance actor-to-actor relationships.

Originality/value

This study introduced a novel mixed methodology aimed at systematically simulating the dynamic process of value co-destruction during UVR. It also provided a fresh perspective on reverse assessment to mitigate the prevalent interest conflicts in UVR, thereby contributing to theoretical advancements and practical strategies for UVR.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 September 2024

Aleksandar Radic, Wei Quan, Antonio Ariza-Montes and Heesup Han

This study aims to evaluate the behavioral predictors that affect tourists’ intentions to visit silver screen destinations.

Abstract

Purpose

This study aims to evaluate the behavioral predictors that affect tourists’ intentions to visit silver screen destinations.

Design/methodology/approach

The survey questionnaire was composed of multi-item measures, and a total of 432 questionnaires were collected by purposive sampling technique. Participants were asked about sensory stimuli, social stimuli, naturalistic stimuli, cultural stimuli, hospitality culture stimuli, cognitive responses, affective responses and behavior approach, which were evaluated using a seven-point Likert scale.

Findings

The authors discovered that cognitive and affective responses positively influence the tourists’ intention toward destinations with film-induced tourism, because tourists highly value unique and refreshing symbolic connotations of silver screen destinations, which are commonly predisposed to nostalgia and poetic on the scene.

Originality/value

The originality of this study and the theoretical value of the present research lies with revealing specific relations within the film-induced experienscape constructs that are based on the multistakeholder and multidisciplinary approach. Moreover, this study puts forward constructive suggestions for destination stakeholders in regard to how to market film-induced tourism that uses a multidisciplinary approach that is encompassed by experienscape constructs, which thereby reinforces the film-induced tourists’ experience and their behavior approach.

Details

Consumer Behavior in Tourism and Hospitality, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2752-6666

Keywords

Article
Publication date: 10 September 2024

Xingbing Yang, Xinye Wang, Wei Li, Tingting Zhang, Mengmeng Yan and Xue Fu

This paper aims to study the direct synthesis of imino methyl ether amino resin using commercially available formaldehyde, melamine and methanol through one-step two-stage…

13

Abstract

Purpose

This paper aims to study the direct synthesis of imino methyl ether amino resin using commercially available formaldehyde, melamine and methanol through one-step two-stage catalysis.

Design/methodology/approach

Initially, melamine undergoes a reaction with formaldehyde to form hydroxylmethylation melamine in a basic setting. Subsequently, hydrochloric acid is incorporated to facilitate the etherification process. The study delves into the impact of various factors during the etherification phase, including the quantity of methanol, the temperature at which etherification occurs, the number of etherification cycles and the amount of catalyst used, on the synthesis of imino methyl-etherified amino resins. Ultimately, the most favorable conditions for etherification are identified through comparative analysis to evaluate the resulting synthesized products.

Findings

The methyl-etherified amino resin, characterized by a stable structure and consistent performance, was efficiently synthesized through a one-step, two-stage catalytic process. Optimal conditions for the etherification stage were determined to be a reaction temperature of 35°C, a melamine to methanol ratio of 1:24 and an addition of hydrochloric acid ranging from 2.2 mL to 2.5 mL. Remarkably, the resulting resin notably enhanced the water resistance, salt resistance and gloss of the canned iron printing varnish coatings.

Originality/value

Amino resins, known for their broad applications across numerous industries, face sustainability and operational efficiency hurdles when produced through traditional methods, which predominantly involve the use of a 37% formaldehyde solution. To tackle these issues, our research introduces an innovative method that add 37% formaldehyde to facilitate industrial production. The use of 37% liquid formaldehyde in this paper has two benefits: first, it is convenient for industrial application and production; Second, it is convenient to provide mild reaction conditions at lower concentrations because the amino group is relatively active, which is convenient for the preservation of the amino group and integrates it with a one-step, two-stage catalytic process. The primary objective of our study is threefold: to reduce the environmental footprint of amino resin synthesis, to optimize the use of resources and to improve the economic viability for its large-scale production. By employing this new strategy, we try to provide a more sustainable and efficient manufacturing process for amino resins.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2024

Lei Ren, Guolin Cheng, Wei Chen, Pei Li and Zhenhe Wang

This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online…

Abstract

Purpose

This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online and neural network-based strategies. It offers a comprehensive review and covers causes of drift, compensation methods and future directions. This synthesis provides insights for enhancing the reliability and effectiveness of E-nose systems in drift issues.

Design/methodology/approach

The article adopts a comprehensive approach and systematically explores the causes of sensor drift in E-nose systems and proposes various compensation strategies. It covers both offline and online compensation methods, as well as neural network-based approaches, and provides a holistic view of the available techniques.

Findings

The article provides a comprehensive overview of drift compensation algorithms for E-nose technology and consolidates recent research insights. It addresses challenges like sensor calibration and algorithm complexity, while discussing future directions. Readers gain an understanding of the current state-of-the-art and emerging trends in electronic olfaction.

Originality/value

This article presents a comprehensive review of the latest advancements in drift compensation algorithms for electronic nose technology and covers the causes of drift, offline drift compensation algorithms, online drift compensation algorithms and neural network drift compensation algorithms. The article also summarizes and discusses the current challenges and future directions of drift compensation algorithms in electronic nose systems.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 27 August 2024

Wei Li, Xiaoxuan Yang, Peng Wang, Zefeng Wen and Jian Han

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Abstract

Purpose

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Design/methodology/approach

A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling. Additionally, the dynamic characteristics of the track, wheelset and bogie were also measured. These measurements provided insights into the mechanisms that lead to wheel polygonization.

Findings

The results of the field tests indicate that wheel polygonal wear in the EMU train primarily exhibits 14–16 and 25–27 harmonic orders. The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz, which closely match the dominated frequencies of axle box and bogie vibrations. These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie, which can be excited by wheel/rail irregularities.

Originality/value

The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains. Futher, the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear, providing practical value for improving the safety, performance and maintenance efficiency of high-speed EMU trains.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 15 July 2024

Min Zhao, Wei He, Xiuyu He, Liang Zhang and Hongxue Zhao

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the…

Abstract

Purpose

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.

Design/methodology/approach

Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.

Findings

The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.

Originality/value

Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 May 2024

Wei Liu

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing…

Abstract

Purpose

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing different types of transients and to derive appropriate parameters indicative of the corrosion severity of such transient events.

Design/methodology/approach

An equivalent circuit model was used for the transient analysis, which was performed using a local current allocation rule based on the relative instant cathodic resistance of the coupled electrodes, as well as the kinetic parameters derived from the electrochemical polarization measurement.

Findings

The shape and size of the electrochemical current transients arising from SS 316 L were influenced by the film stability, local anodic dissolution kinetics and the symmetry of the cathodic kinetics between the coupled electrodes, where the ultralong transient might correspond to the propagation of film damage with a slow anodic dissolution rate. The dynamic cathodic resistance during the final stage of transient current growth can serve as a characteristic parameter that reflects the loss of passive film protection.

Originality/value

Estimation of the local anodic current trace opens a new way for individual electrochemical transient analysis associated with the charges involved, local current densities and changes in film resistance throughout localized corrosion processes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 10