Search results

1 – 4 of 4
Article
Publication date: 8 July 2020

Norliza Ismail, Azman Jalar, Maria Abu Bakar, Nur Shafiqa Safee, Wan Yusmawati Wan Yusoff and Ariffin Ismail

The purpose of this paper is to investigate the effect of carbon nanotube (CNT) addition on microstructure, interfacial intermetallic compound (IMC) layer and micromechanical…

145

Abstract

Purpose

The purpose of this paper is to investigate the effect of carbon nanotube (CNT) addition on microstructure, interfacial intermetallic compound (IMC) layer and micromechanical properties of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint under blast wave condition. This work is an extension from the previous study of microstructural evolution and hardness properties of Sn-Ag-Cu (SAC) solder under blast wave condition.

Design/methodology/approach

SAC/CNT solder pastes were manufactured by mixing of SAC solder powder, fluxes and CNT with 0.02 and 0.04 by weight percentage (Wt.%) separately. This solder paste then printed on the printed circuit board (PCB) with the copper surface finish. Printed samples underwent reflow soldering to form the solder joint. Soldered samples then exposed to the open field air blast test with different weight charges of explosives. Microstructure, interfacial IMC layer and micromechanical behavior of SAC/CNT solder joints after blast test were observed and analyzed via optical microscope, field emission scanning microscope and nanoindentation.

Findings

Exposure to the blast wave induced the microstructure instability of SAC305/Cu and SAC/CNT/Cu solder joint. Interfacial IMC layer thickness and hardness properties increases with increase in explosive weight. The existence of CNT in the SAC305 solder system is increasing the resistance of solder joint to the blast wave.

Originality/value

Response of micromechanical properties of SAC305/CNT/Cu solder joint has been identified and provided a fundamental understanding of reliability solder joint, especially in extreme conditions such as for military applications.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 June 2022

Wan Yusmawati Wan Yusoff, Norliza Ismail, Nur Farisa Nadia Mohmad Lehan, Azuraida Amat, Ku Zarina Ku Ahmad, Azman Jalar and Irman Abdul Rahman

This paper aims to investigate the effect of different doses of gamma radiation on the micromechanical response (hardness properties and creep behaviour) of 96.5Sn-3.0Ag-0.5Cu…

Abstract

Purpose

This paper aims to investigate the effect of different doses of gamma radiation on the micromechanical response (hardness properties and creep behaviour) of 96.5Sn-3.0Ag-0.5Cu (SAC305) solder alloys.

Design/methodology/approach

SAC305 solder pastes deposited on printed circuit boards (PCBs) were subjected to a reflow soldering process to form soldered samples. The soldered samples were irradiated with a gamma source at different doses (5–50 Gy). Nanoindentation testing was used to determine the hardness properties and creep behaviour after gamma irradiation.

Findings

The results showed that the hardness of SAC305 solder alloys gradually increased up to 15 Gy and then gradually decreased to 50 Gy of gamma irradiation. The highest hardness value (0.37 GPa) was observed on SAC305 solder alloys exposed to 15 Gy irradiation. Hardening of SAC305 solder alloy was suggested to be due to the high defect density induced by the gamma irradiation. Meanwhile, exposure to 50 Gy irradiation resulted in the lowest hardness value, 0.13 GPa. The softening behaviour of SAC305 solder alloy was probably due to the evolution of defect size in the solder joint. In addition, the creep behaviour of the SAC305 solder alloys changed significantly with different gamma irradiation doses. The creep rates were higher at a dose of 10 Gy up to a dose of 50 Gy. Gamma irradiation caused the SAC305 solder alloy to become more ductile compared to the non-irradiated alloy. The stress exponent also showed different deformation mechanisms with varying gamma doses.

Originality/value

Research into the micromechanical properties of solder alloys subjected to gamma irradiation has rarely been reported, especially for Sn-Ag-Cu lead-free solder. Thus, this research provides a fundamental understanding of the micromechanical response (hardness and creep behaviour) of solder, especially lead-free solder alloy, to gamma irradiation.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 April 2019

Wan Yusmawati Wan Yusoff, Norliza Ismail, Nur Shafiqa Safee, Ariffin Ismail, Azman Jalar and Maria Abu Bakar

The purpose of this paper is to discuss the effect of a blast wave on the microstructure, intermetallic layers and hardness properties of Sn0.3Ag0.7Cu (SAC0307) lead-free solder.

Abstract

Purpose

The purpose of this paper is to discuss the effect of a blast wave on the microstructure, intermetallic layers and hardness properties of Sn0.3Ag0.7Cu (SAC0307) lead-free solder.

Design/methodology/approach

Soldered samples were exposed to the blast wave by using trinitrotoluene (TNT) explosive. Microstructure and intermetallic layer thickness were identified using Alicona ® Infinite Focus Measurement software. Hardness properties of investigated solders were determined using a nanoindentation approach.

Findings

Microstructure and intermetallic layers changed under blast wave condition. Hardness properties of exposed solders decreased with an increase in the TNT explosive weight.

Originality/value

Microstructural evolution and mechanical properties of the exposed solder to the blast wave provide a fundamental understanding on how blast waves can affect the reliability of a solder joint, especially for military applications.

Details

Soldering & Surface Mount Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 4 of 4