Search results

1 – 10 of over 1000
Article
Publication date: 2 January 2024

Wenlong Cheng and Wenjun Meng

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Abstract

Purpose

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Design/methodology/approach

In this study, an algorithm for job scheduling and cooperative work of multiple AGVs is designed. In the first part, with the goal of minimizing the total processing time and the total power consumption, the niche multi-objective evolutionary algorithm is used to determine the processing task arrangement on different machines. In the second part, AGV is called to transport workpieces, and an improved ant colony algorithm is used to generate the initial path of AGV. In the third part, to avoid path conflicts between running AGVs, the authors propose a simple priority-based waiting strategy to avoid collisions.

Findings

The experiment shows that the solution can effectively deal with job scheduling and multiple AGV operation problems in the workshop.

Originality/value

In this paper, a collaborative work algorithm is proposed, which combines the job scheduling and AGV running problem to make the research results adapt to the real job environment in the workshop.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 June 2023

Binghai Zhou and Yufan Huang

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic…

Abstract

Purpose

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) and segmented sub-line assignment strategies, with the objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

Hybrid opposition-based learning and variable neighborhood search (HOVMQPSO), a multi-objective meta-heuristics algorithm based on quantum particle swarm optimization is proposed, which hybridizes opposition-based learning methodology as well as a variable neighborhood search mechanism. Such algorithm extends the search space and is capable of obtaining more high-quality solutions.

Findings

Computational experiments demonstrated the outstanding performance of HOVQMPSO in solving the proposed part-feeding problem over the two benchmark algorithms non-dominated sorting genetic algorithm-II and quantum-behaved multi-objective particle swarm optimization. Additionally, using modified real-life assembly data, case studies are carried out, which imply HOVQMPSO of having good stability and great competitiveness in scheduling problems.

Research limitations/implications

The feeding problem is based on static settings in a stable manufacturing system with determined material requirements, without considering the occurrence of uncertain incidents. Current study contributes to assembly line feeding with EV assignment and could be modified to allow cooperation between EVs.

Originality/value

The dynamic cyclic kitting problem with sub-line assignment applying EVs and supermarkets is solved by an innovative HOVMQPSO, providing both novel part-feeding strategy and effective intelligent algorithm for industrial engineering.

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 20 January 2023

Vahid Ghomi, David Gligor, Sina Shokoohyar, Reza Alikhani and Farnaz Ghazi Nezami

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for…

Abstract

Purpose

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for optimizing efficiency in supply chain networks through inbound and outbound Collaborative Logistics implementation among the carriers in centralized, coordinated networks with cross-docking.

Design/methodology/approach

A mixed-integer non-linear programming model is developed to determine the optimal truck-goods assignment while gaining economies of scale through mixing multiple less-than-truckload (LTL) products with different weight-to-volume ratios. Unlike the previous studies that have considered Collaborative Logistics from the cost and profit-sharing perspective, the proposed model seeks to determine an appropriate form of Collaborative Logistics in the VRP.

Findings

This article shows that in a three-echelon supply chain consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. This approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of collaborative logistics among the carriers was discussed. In a three-echelon SC consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. Using a combination of experimental analysis and optimization process, it was recommended that managers be cautious that too much (full or complete) or no collaboration can result in SC performance deterioration.

Originality/value

The suggested approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of Collaborative Logistics among the carriers was discussed.

Details

The International Journal of Logistics Management, vol. 34 no. 6
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 22 November 2023

Kalpana Pitchaimani, Tarik Zouadi, K.S. Lokesh and V. Raja Sreedharan

As the world is becoming more volatile and uncertain, organizations face much complexity in their daily operations. Further, there is a much ambiguity in business operations to…

Abstract

Purpose

As the world is becoming more volatile and uncertain, organizations face much complexity in their daily operations. Further, there is a much ambiguity in business operations to achieve the effective utilization of resources. The work optimizes a novel constraint programming model approach of the utilization of shuttle services vehicle while considering cost savings, employee wellbeing and other real an Information Technology enabled service (ITES) industry constraints.

Design/methodology/approach

The present work considers a novel extension of the vehicle routing problem related to the shuttle service operation in an ITES industry in VUCA context. Additionally, the model considers the women safety aspects, which engages the company to provide a security guard for women employees in the night shift.

Findings

Numerical experiments were conducted on real instances data of ITES industrial partner. The results show that the vehicle utilization increased from 75% up to 96% while ensuring in parallel the wellbeing of employees and women safety during the night shift. Finally, the proposed model is converted to a decision support application allowing ITES partner to plan employees shuttle service operations efficiently.

Originality/value

Study has evaluated the shuttle services optimization for ITES industry using data from industrial which makes it a unique contribution to literature in shuttle operations. Further, the study used constraint programming to evaluate the vehicle utilization and security allocation, thereby introducing new parameter on security allocation in open VRP problem.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 18 January 2024

Zaheer Doomah, Asish Seeboo and Tulsi Pawan Fowdur

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector…

Abstract

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector in an attempt to achieve related United Nations Sustainable Development Goals (SDGs) targets. ITS applications that have now been extensively tested worldwide and have become part of the everyday transport toolkit available to practitioners have been discussed. AI techniques applied successfully in specific ITS applications such as automatic traffic control systems, real-time image processing, automatic incident detection, safety management, road condition assessment, asset management and traffic enforcement systems have been identified. These methods have helped to provide traffic engineers and transport planners with novel ways to improve safety, mobility, accessibility and efficiency in the sector and thus move closer to achieving the various SDG targets pertaining to transportation.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 29 May 2023

Vu Hong Son Pham, Nguyen Thi Nha Trang and Chau Quang Dat

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Abstract

Purpose

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Design/methodology/approach

The paper focused on developing a new metaheuristic swarm intelligence algorithm using Java code. The paper used statistical criterion: mean, standard deviation, running time to verify the effectiveness of the proposed optimization method and compared its derivatives with other algorithms, such as genetic algorithm (GA), Tabu search (TS), bee colony optimization (BCO), ant lion optimizer (ALO), grey wolf optimizer (GWO), dragonfly algorithm (DA) and particle swarm optimization (PSO).

Findings

The paper proved that integrating GWO and DA yields better results than independent algorithms and some selected algorithms in the literature. It also suggests that multi-independent batch plants could effectively cooperate in a system to deliver RMC to various construction sites.

Originality/value

The paper provides a compelling new hybrid swarm intelligence algorithm and a model allowing multi-independent batch plants to work in a system to deliver RMC. It fulfills an identified need to study how batch plant managers can expand their dispatching network, increase their competitiveness and improve their supply chain operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 June 2022

Zhiyuan Liu, Yuwen Chen and Jin Qin

This paper aims to address a pollution-routing problem with one general period of congestion (PRP-1GPC), where the start and finish times of this period can be set freely.

Abstract

Purpose

This paper aims to address a pollution-routing problem with one general period of congestion (PRP-1GPC), where the start and finish times of this period can be set freely.

Design/methodology/approach

In this paper, three sets of decision variables are optimized, namely, travel speeds before and after congestion and departure times on given routes, aiming to minimize total cost including green-house gas emissions, fuel consumption and driver wages. A two-phase algorithm is introduced to solve this problem. First, an adaptive large neighborhood search heuristic is used where new removal and insertion operators are developed. Second, an analysis of optimal speed before congestion is presented, and a tailored speed-and-departure-time optimization algorithm considering congestion is proposed by obtaining the best node to be served first over the congested period.

Findings

The results show that the newly developed operator of congested service-time insertion with noise is generally used more than other insertion operators. Besides, compared to the baseline methods, the proposed algorithm equipped with the new operators provides better solutions in a short time both in PRP-1GPC instances and time-dependent pollution-routing problem instances.

Originality/value

This paper considers a more general situation of the pollution-routing problem that allows drivers to depart before the congestion. The PRP-1GPC is better solved by the proposed algorithm, which adds operators specifically designed from the new perspective of the traveling distance, traveling time and service time during the congestion period.

Details

Journal of Modelling in Management, vol. 18 no. 5
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 4 July 2023

Binghai Zhou and Mingda Wen

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses…

Abstract

Purpose

In a kitting supply system, the occurrence of material-handling errors is unavoidable and will cause serious production losses to an assembly line. To minimize production losses, this paper aims to present a dynamic scheduling problem of automotive assembly line considering material-handling mistakes by integrating abnormal disturbance into the material distribution problem of mixed-model assembly lines (MMALs).

Design/methodology/approach

A multi-phase dynamic scheduling (MPDS) algorithm is proposed based on the characteristics and properties of the dynamic scheduling problem. In the first phase, the static material distribution scheduling problem is decomposed into three optimization sub-problems, and the dynamic programming algorithm is used to jointly optimize the sub-problems to obtain the optimal initial scheduling plan. In the second phase, a two-stage rescheduling algorithm incorporating removing rules and adding rules was designed according to the status update mechanism of material demand and multi-load AGVs.

Findings

Through comparative experiments with the periodic distribution strategy (PD) and the direct insertion method (DI), the superiority of the proposed dynamic scheduling strategy and algorithm is verified.

Originality/value

To the best of the authors’ knowledge, this study is the first to consider the impact of material-handling errors on the material distribution scheduling problem when using a kitting strategy. By designing an MPDS algorithm, this paper aims to maximize the absorption of the disturbance caused by material-handling errors and reduce the production losses of the assembly line as well as the total cost of the material transportation.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000