Search results

1 – 10 of over 1000
Article
Publication date: 2 January 2024

Wenlong Cheng and Wenjun Meng

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Abstract

Purpose

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Design/methodology/approach

In this study, an algorithm for job scheduling and cooperative work of multiple AGVs is designed. In the first part, with the goal of minimizing the total processing time and the total power consumption, the niche multi-objective evolutionary algorithm is used to determine the processing task arrangement on different machines. In the second part, AGV is called to transport workpieces, and an improved ant colony algorithm is used to generate the initial path of AGV. In the third part, to avoid path conflicts between running AGVs, the authors propose a simple priority-based waiting strategy to avoid collisions.

Findings

The experiment shows that the solution can effectively deal with job scheduling and multiple AGV operation problems in the workshop.

Originality/value

In this paper, a collaborative work algorithm is proposed, which combines the job scheduling and AGV running problem to make the research results adapt to the real job environment in the workshop.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Open Access
Article
Publication date: 30 July 2024

Lin Li, Jiushan Wang and Shilu Xiao

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Abstract

Purpose

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Design/methodology/approach

The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle. Based on data mechanism models, it predicts the lifespan of key components, evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.

Findings

The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system, which helps operators to monitor the operation of vehicle online, predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.

Originality/value

This system improves the efficiency of rail vehicle operation, scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.

Article
Publication date: 20 January 2023

Vahid Ghomi, David Gligor, Sina Shokoohyar, Reza Alikhani and Farnaz Ghazi Nezami

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for…

Abstract

Purpose

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for optimizing efficiency in supply chain networks through inbound and outbound Collaborative Logistics implementation among the carriers in centralized, coordinated networks with cross-docking.

Design/methodology/approach

A mixed-integer non-linear programming model is developed to determine the optimal truck-goods assignment while gaining economies of scale through mixing multiple less-than-truckload (LTL) products with different weight-to-volume ratios. Unlike the previous studies that have considered Collaborative Logistics from the cost and profit-sharing perspective, the proposed model seeks to determine an appropriate form of Collaborative Logistics in the VRP.

Findings

This article shows that in a three-echelon supply chain consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. This approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of collaborative logistics among the carriers was discussed. In a three-echelon SC consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. Using a combination of experimental analysis and optimization process, it was recommended that managers be cautious that too much (full or complete) or no collaboration can result in SC performance deterioration.

Originality/value

The suggested approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of Collaborative Logistics among the carriers was discussed.

Details

The International Journal of Logistics Management, vol. 34 no. 6
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 22 November 2023

Kalpana Pitchaimani, Tarik Zouadi, K.S. Lokesh and V. Raja Sreedharan

As the world is becoming more volatile and uncertain, organizations face much complexity in their daily operations. Further, there is a much ambiguity in business operations to…

Abstract

Purpose

As the world is becoming more volatile and uncertain, organizations face much complexity in their daily operations. Further, there is a much ambiguity in business operations to achieve the effective utilization of resources. The work optimizes a novel constraint programming model approach of the utilization of shuttle services vehicle while considering cost savings, employee wellbeing and other real an Information Technology enabled service (ITES) industry constraints.

Design/methodology/approach

The present work considers a novel extension of the vehicle routing problem related to the shuttle service operation in an ITES industry in VUCA context. Additionally, the model considers the women safety aspects, which engages the company to provide a security guard for women employees in the night shift.

Findings

Numerical experiments were conducted on real instances data of ITES industrial partner. The results show that the vehicle utilization increased from 75% up to 96% while ensuring in parallel the wellbeing of employees and women safety during the night shift. Finally, the proposed model is converted to a decision support application allowing ITES partner to plan employees shuttle service operations efficiently.

Originality/value

Study has evaluated the shuttle services optimization for ITES industry using data from industrial which makes it a unique contribution to literature in shuttle operations. Further, the study used constraint programming to evaluate the vehicle utilization and security allocation, thereby introducing new parameter on security allocation in open VRP problem.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Book part
Publication date: 18 January 2024

Zaheer Doomah, Asish Seeboo and Tulsi Pawan Fowdur

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector…

Abstract

This chapter provides an overview of the potential use of Intelligent Transport Systems (ITS) and associated artificial intelligence (AI) techniques in the land transport sector in an attempt to achieve related United Nations Sustainable Development Goals (SDGs) targets. ITS applications that have now been extensively tested worldwide and have become part of the everyday transport toolkit available to practitioners have been discussed. AI techniques applied successfully in specific ITS applications such as automatic traffic control systems, real-time image processing, automatic incident detection, safety management, road condition assessment, asset management and traffic enforcement systems have been identified. These methods have helped to provide traffic engineers and transport planners with novel ways to improve safety, mobility, accessibility and efficiency in the sector and thus move closer to achieving the various SDG targets pertaining to transportation.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

1958

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 27 June 2022

Zhiyuan Liu, Yuwen Chen and Jin Qin

This paper aims to address a pollution-routing problem with one general period of congestion (PRP-1GPC), where the start and finish times of this period can be set freely.

Abstract

Purpose

This paper aims to address a pollution-routing problem with one general period of congestion (PRP-1GPC), where the start and finish times of this period can be set freely.

Design/methodology/approach

In this paper, three sets of decision variables are optimized, namely, travel speeds before and after congestion and departure times on given routes, aiming to minimize total cost including green-house gas emissions, fuel consumption and driver wages. A two-phase algorithm is introduced to solve this problem. First, an adaptive large neighborhood search heuristic is used where new removal and insertion operators are developed. Second, an analysis of optimal speed before congestion is presented, and a tailored speed-and-departure-time optimization algorithm considering congestion is proposed by obtaining the best node to be served first over the congested period.

Findings

The results show that the newly developed operator of congested service-time insertion with noise is generally used more than other insertion operators. Besides, compared to the baseline methods, the proposed algorithm equipped with the new operators provides better solutions in a short time both in PRP-1GPC instances and time-dependent pollution-routing problem instances.

Originality/value

This paper considers a more general situation of the pollution-routing problem that allows drivers to depart before the congestion. The PRP-1GPC is better solved by the proposed algorithm, which adds operators specifically designed from the new perspective of the traveling distance, traveling time and service time during the congestion period.

Details

Journal of Modelling in Management, vol. 18 no. 5
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

1 – 10 of over 1000