Search results

1 – 10 of 29
Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2024

Manjeet Kumar, Pradeep Kaswan and Manjeet Kumari

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an…

Abstract

Purpose

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an inclined magnetic field within a porous medium on a nonlinear stretching plate. This investigation is conducted by using neural networking techniques, specifically using neural networks-backpropagated with the Levenberg–Marquardt scheme (NN-BLMS).

Design/methodology/approach

The initial nonlinear coupled PDEs system that represented the MRCNFM is transformed into an analogous nonlinear ODEs system by the adoption of similarity variables. The reference data set is created by varying important MHD-MRCNFM parameters using the renowned Lobatto IIIA solver. The numerical reference data are used in validation, testing and training sets to locate and analyze the estimated outcome of the created NN-LMA and its comparison with the corresponding reference solution. With mean squared error curves, error histogram analysis and a regression index, better performance is consistently demonstrated. Mu is a controller that controls the complete training process, and the NN-BLMS mainly concentrates on the higher precision of nonlinear systems.

Findings

The peculiar behavior of the appropriate physical parameters on nondimensional shapes is demonstrated and explored via sketches and tables. For escalating amounts of inclination angle and Brinkman number, a viable entropy profile is accomplished. The angular velocity curve grows as the rotation viscosity and surface condition factors rise. The dominance of friction-induced irreversibility is observed in the vicinity of the sheet, whereas in the farthest region, the situation is reversed with heat transfer playing a more significant role in causing irreversibilities.

Originality/value

To improve the efficiency of any thermodynamic system, it is essential to identify and track the sources of irreversible heat losses. Therefore, the authors analyze both flow phenomena and heat transport, with a particular focus on evaluating the generation of entropy within the system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2024

Umair Khan, Aurang Zaib, Anuar Ishak, El-Sayed M. Sherif and Piotr Wróblewski

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable…

Abstract

Purpose

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable them to be controlled and manipulated when ferrofluids are exposed to magnetic fields. This study aims to inspect the features of unsteady stagnation point flow (SPF) and heat flux from the surface by incorporating ferromagnetic particles through a special kind of second-grade fluid (SGF) across a movable sheet with a nonlinear heat source/sink and magnetic field effect. The mass suction/injection and stretching/shrinking boundary conditions are also inspected to calculate the fine points of the features of multiple solutions.

Design/methodology/approach

The leading equations that govern the ferrofluid flow are reduced to a group of ordinary differential equations by applying similarity variables. The converted equations are numerically solved through the bvp4c solver. Afterward, study and discussion are carried out to examine the different physical parameters of the characteristics of nanofluid flow and thermal properties.

Findings

Multiple solutions are revealed to happen for situations of unsteadiness, shrinking as well as stretching sheets. Greater suction slows the separation of the boundary layers and causes the critical values to expand. The region where the multiple solutions appear is observed to expand with increasing values of the magnetic, non-Newtonian and suction parameters. Moreover, the fluid velocity significantly uplifts while the temperature declines due to the suction parameter.

Originality/value

The novelty of the work is to deliberate the impact of mass suction/injection on the unsteady SPF through the special second-grade ferrofluids across a movable sheet with an erratic heat source/sink. The confirmed results provide a very good consistency with the accepted papers. Previous studies have not yet fully explored the entire analysis of the proposed model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Content available
Book part
Publication date: 27 May 2024

Angelo Corelli

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 27 September 2023

Ning Liu, Linyu Zhou, LiPing Xu and Shuwei Xiang

As the cost of completing a transaction, the green merger and acquisition (M&A) premium paid on mergers can influence whether the acquisition creates value or not. However…

Abstract

Purpose

As the cost of completing a transaction, the green merger and acquisition (M&A) premium paid on mergers can influence whether the acquisition creates value or not. However, studies linking M&A premiums to firm value have had mixed results, even fewer studies have examined the effect of green M&A premiums on bidders’ firm value. The purpose of this paper is to investigate whether and how green M&A premiums affect firm value in the context of China’s heavy polluters.

Design/methodology/approach

Using 323 deals between 2008 and 2019 among China’s heavy polluters, this paper estimates with correlation analysis and multiple regression analysis.

Findings

Green M&A premiums are negatively associated with firm value. The results are more significant when firms adopt symbolic rather than substantive corporate social responsibility (CSR) strategies. Robustness and endogeneity tests corroborate the findings. The negative relation is stronger when acquiring firms have low governmental subsidy and environmental regulation, when firms have overconfident management, when firms are state-owned and when green M&A occurs locally or among provinces in the same region. This study also analyzes agency cost as an intermediary in the relationship between green M&A premium and firm value, which lends support to the agency-view hypothesis.

Originality/value

This study provides systemic evidence that green M&A premiums damage firm value through agency cost channel and the choice of CSR strategies from the perspective of acquirers. These findings enrich the literature on both the economic consequences of green M&A premiums and the determinants of firm value and provide a plausible explanation for mixed findings on the relationship between green M&A premiums and firm value.

Details

Chinese Management Studies, vol. 18 no. 3
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 15 May 2023

Lin Jia, Ying Zhang and Chen Lin

Social interaction in comment sections has become a key factor for backers' decision making in crowdfunding platforms. However, current research on the two-way social interaction…

Abstract

Purpose

Social interaction in comment sections has become a key factor for backers' decision making in crowdfunding platforms. However, current research on the two-way social interaction in crowdfunding is insufficient, and there exist inconsistent conclusions. This study focuses on the social interaction between creators and backers and explores its influence on the successful exit of crowdfunding projects.

Design/methodology/approach

The extended Cox model is used for the empirical analysis of 1,988 crowdfunding projects on the Modian (www.modian.com) platform, a crowdfunding platform for cultural and creative projects in China. The two-way social interaction is reflected in comment quantity and sentiment, as well as reply rate.

Findings

Results reveal an inverted U-shaped relationship between comment quantity/sentiment and the successful exit of crowdfunding projects. This relationship is strengthened by high reply rate.

Originality/value

This study focuses on comment quantity and sentiment. The inverted U-shaped results reconcile previous conclusions. Replies from creators are regarded as a separate factor, and their moderating role is explained. The study research proves the importance of social interaction in crowdfunding platforms and provides suggestions for backers, creators and platform managers.

Details

Information Technology & People, vol. 37 no. 4
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 9 December 2022

Ziqin Yu and Xiang Xiao

In recent years, environmental issues and resource depletion have posed significant challenges to firms and society. To address these environmental challenges, firms seek to build…

Abstract

Purpose

In recent years, environmental issues and resource depletion have posed significant challenges to firms and society. To address these environmental challenges, firms seek to build strategic alliances of green supply chain management (GSCM) with their supply chain partner. As the largest developing country in the Asia–Pacific region, China needs to take more responsibility for environmental protection, which requires more Chinese firms to participate in GSCM. Therefore, focusing on the issue of GSCM and innovation persistence in the context of an increasingly harsh ecological environment is essential.

Design/methodology/approach

To test the hypothesis, the authors perform an empirical analysis on a sample of 124 listed firms in China from 2014 to 2019. The results are robust to a battery of robustness analyses the authors performed to take care of endogeneity.

Findings

Empirical results indicate that GSCM can promote innovation persistence and both market environment turbulence and technology environment turbulence have a positive moderating effect on the relationship between the two. Mechanism tests show that GSCM can improve innovation efficiency, ensure innovation quality and alleviate financing constraints, thus promoting the innovation persistence of firms.

Originality/value

This study can provide a theoretical basis for the country to promote GSCM orientation, raise firms' awareness of the value of GSCM, convey the significance of GSCM to investors, influence firms' investment decisions and give experience to other developing countries.

Details

European Journal of Innovation Management, vol. 27 no. 4
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 29