Search results

1 – 10 of 73
Article
Publication date: 8 March 2023

Jordi Vila-Pérez, Matteo Giacomini and Antonio Huerta

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using…

Abstract

Purpose

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks.

Design/methodology/approach

The work presents a detailed comparison with reference solutions published in the literature –when available– and numerical results computed using a commercial cell-centred finite volume software.

Findings

The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%.

Originality/value

The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2023

James Elgy, Paul D. Ledger, John L. Davidson, Toykan Özdeğer and Anthony J. Peyton

The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex symmetric rank–2 magnetic polarizability tensor (MPT) is important for…

Abstract

Purpose

The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex symmetric rank–2 magnetic polarizability tensor (MPT) is important for metal detection applications including discriminating between threat and non-threat objects in security screening, identifying unexploded anti-personnel landmines and ordnance and identifying metals of high commercial value in scrap sorting. Many everyday non-threat items have both a large electrical conductivity and a magnetic behaviour, which, for sufficiently weak fields and the frequencies of interest, can be modelled by a high relative magnetic permeability. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

The numerical simulation of the MPT for everyday non-threat highly conducting magnetic objects over a broad range of frequencies is challenging due to the resulting thin skin depths. The authors address this by employing higher order edge finite element discretisations based on unstructured meshes of tetrahedral elements with the addition of thin layers of prismatic elements. Furthermore, computer aided design (CAD) geometrical models of the non-threat and threat object are often not available and, instead, the authors extract the geometrical features of an object from an imaging procedure.

Findings

The authors obtain accurate numerical MPT characterisations that are in close agreement with experimental measurements for realistic physical objects. The assessment of uncertainty shows the impact of geometrical and material parameter uncertainties on the computational results.

Originality/value

The authors present novel computations and measurements of MPT characterisations of realistic objects made of magnetic materials. A novel assessment of uncertainty in the numerical predictions of MPT characterisations for uncertain geometry and material parameters is included.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab…

204

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2021

Chun Hei Edmund Sek, M.Z. Abdullah, Kok Hwa Hwa Yu and Shaw Fong Wong

This study aims to simulate molded printed circuit board (PCB) warpage behavior under reflow temperature distribution. Simulation models are used to estimate dynamic warpage…

Abstract

Purpose

This study aims to simulate molded printed circuit board (PCB) warpage behavior under reflow temperature distribution. Simulation models are used to estimate dynamic warpage behavior for different form factor sizes.

Design/methodology/approach

This study analyzes warpage during the reflow process. The shadow moiré experiment methodology is used to collect data on the dynamic warpage performance of a model with a form factor of 10mm × 10mm × 1mm. The temperature profile with heating from 25°C to 300°C at intervals of 50°C is used, and the sample is made to undergo a cooling process until it reaches the room temperature. Subsequently, ANSYS static structural simulation is performed on similar form factor models to ascertain the accuracy of the simulation results.

Findings

Results show that the deformation and total force induced by coefficient of thermal expansion (CTE) mismatch are examined based on the warpage performance of models with different sizes, that is, 45mm × 45mm × 1mm and 45mm × 15mm × 1mm. Compared with the experimental data, the simulated modeling accuracy yields a less than 5% deviation in the dynamic warpage prediction at a reflow temperature of 300°C. Results also reveal that the larger the model, the larger the warpage changes under the reflow temperature.

Research limitations/implications

The simulated warpage is limited to the temperature and force induced by CTE mismatch between two materials. The form factor of the ball-grid array model is limited to only three different sizes. The model is assumed to be steady, isothermal and static. The simulation adopts homogenous materials, as it cannot accurately model nonhomogeneous multilayered composite materials.

Practical implications

This study can provide engineers and researchers with a profound understanding of molded PCB warpage, minimal resource utilization and the improved product development process.

Social implications

The accurate prediction of molded PCB warpage can enable efficient product development and reduce resources and production time, thereby creating a sustainable environment.

Originality/value

The literature review points out that warpage in various types of PCBs was successfully examined, and that considerable efforts were exerted to investigate warpage reduction in PCB modules. However, PCB warpage studies are limited to bare PCBs. To the best of the authors’ knowledge, the examination of warpage in a molded PCB designed with a molded compound cover, as depicted in Figure 3, is yet to be conducted. A molded compound provides strong lattice support for PCBs to prevent deformation during the reflow process, which is a topic of considerable interest and should be explored.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Rahim Şibil

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and the influence of different vegetation covers in different layers.

Design/methodology/approach

Ansys Fluent, a computational fluid dynamics software, was used to calculate the flow and turbulence characteristics using a three-dimensional, turbulent (k-e realizable), incompressible and steady-flow assumption, along with various near-wall treatment approaches (standard, scalable, non-equilibrium and enhanced) in the vegetated channel. The numerical study was validated concerning an experimental study conducted in the existing literature.

Findings

The numerical model successfully predicted experimental results with relative error rates below 10%. It was determined that nonequilibrium wall functions exhibited the highest predictive success in experiment Run 1, standard wall functions in experiment Run 2 and enhanced wall treatments in experiment Run 3. This study has found that plant growth significantly alters open channel flow. In the contact zones, the velocities and the eddy viscosity are low, while in the free zones they are high. On the other hand, the turbulence kinetic energy and turbulence eddy dissipation are maximum at the solid–liquid interface, while they are minimum at free zones.

Originality/value

This is the first study, to the best of the author’s knowledge, concerning the performance of different near-wall treatment approaches on the prediction of vegetation-covered open channel flow characteristics. And this study provides valuable insights to improve the hydraulic performance of open-channel systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 August 2023

Mohammad Mushfiqur Rahman, Arbaaz Khan, David Lowther and Dennis Giannacopoulos

The purpose of this paper is to develop surrogate models, using deep learning (DL), that can facilitate the application of EM analysis software. In the current status quo…

Abstract

Purpose

The purpose of this paper is to develop surrogate models, using deep learning (DL), that can facilitate the application of EM analysis software. In the current status quo, electrical systems can be found in an ever-increasing range of products that are part of everyone’s daily live. With the advances in technology, industries such as the automotive, communications and medical devices have been disrupted with new electrical and electronic systems. The innovation and development of such systems with increasing complexity over time has been supported by the increased use of electromagnetic (EM) analysis software. Such software enables engineers to virtually design, analyze and optimize EM systems without the need for building physical prototypes, thus helping to shorten the development cycles and consequently cut costs.

Design/methodology/approach

The industry standard for simulating EM problems is using either the finite difference method or the finite element method (FEM). Optimization of the design process using such methods requires significant computational resources and time. With the emergence of artificial intelligence, along with specialized tools for automatic differentiation, the use of DL has become computationally much more efficient and cheaper. These advances in machine learning have ushered in a new era in EM simulations where engineers can compute results much faster while maintaining a certain level of accuracy.

Findings

This paper proposed two different models that can compute the magnetic field distribution in EM systems. The first model is based on a recurrent neural network, which is trained through a data-driven supervised learning method. The second model is an extension to the first with the incorporation of additional physics-based information to the authors’ model. Such a DL model, which is constrained by the laws of physics, is known as a physics-informed neural network. The solutions when compared with the ground truth, computed using FEM, show promising accuracy for the authors’ DL models while reducing the computation time and resources required, as compared to previous implementations in the literature.

Originality/value

The paper proposes a neural network architecture and is trained with two different learning methodologies, namely, supervised and physics-based. The working of the network along with the different learning methodologies is validated over several EM problems with varying levels of complexity. Furthermore, a comparative study is performed regarding performance accuracy and computational cost to establish the efficacy of different architectures and learning methodologies.

Article
Publication date: 20 January 2023

Leghouchi Abdelghani

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient…

Abstract

Purpose

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan for mitigation purposes.

Design/methodology/approach

To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam-break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam.

Findings

Geospatial analysis of the simulation results conducted in a geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam-break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk.

Originality/value

Overall, this study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam-break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 August 2023

Zhiqi Liu, Tanghong Liu, Hongrui Gao, Houyu Gu, Yutao Xia and Bin Xu

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve…

Abstract

Purpose

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve the wind-sheltering performance of the porous wind barriers.

Design/methodology/approach

Improved delayed detached eddy simulations based on the k-ω turbulence model were carried out, and the results were validated with wind tunnel tests. The effects of the hole diameter on the flow characteristics and wind-sheltering performance were studied by comparing the wind barriers with the porosity of 21.6% and the hole diameters of 60 mm–360 mm. The flow characteristics above the windward and leeward tracks were analyzed, and the wind-sheltering performance of the wind barriers was assessed using the wind speed reduction coefficients.

Findings

The hole diameters affected the jet behind the wind barriers and the recirculation region above the tracks. Below the top of the wind barriers, the time-averaged velocity first decreased and then increased with the increase in the hole diameter. The wind barrier with the hole diameter of 120 mm had the best wind-sheltering performance for the windward track, but such barrier might lead to overprotection on the leeward track. The wind-sheltering performance of the wind barriers with the hole diameters of 240 mm and 360 mm was significantly degraded, especially above the windward track.

Originality/value

The effects of the hole diameters on the wake and wind-sheltering performance of the wind barriers were studied, by which the theoretical basis is provided for a better design of the porous wind barrier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 12 months (73)

Content type

Article (73)
1 – 10 of 73