Search results

1 – 10 of 187
Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 August 2023

Mingqiu Zheng, Chenxing Hu and Ce Yang

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent…

Abstract

Purpose

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery. Aiming at meeting the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery, a fast method for predicting flow fields with periodic behavior is proposed here, with verification in the context of a radial turbine (RT).

Design/methodology/approach

Sparsity-promoting dynamic mode decomposition is used to determine the dominant coherent structures of the unsteady flow for mode selection, and for flow-field prediction, the characteristic parameters including amplitude and frequency are predicted using one-dimensional Gaussian fitting with flow rate and two-dimensional triangulation-based cubic interpolation with both flow rate and rotation speed. The flow field can be rebuilt using the predicted characteristic parameters and the chosen model.

Findings

Under single flow-rate variation conditions, the turbine flow field can be recovered using the first seven modes and fitted amplitude modulus and frequency with less than 5% error in the pressure field and less than 9.7% error in the velocity field. For the operating conditions with concurrent flow-rate and rotation-speed fluctuations, the relative error in the anticipated pressure field is likewise within an acceptable range. Compared to traditional numerical simulations, the method requires a lot less time while maintaining the accuracy of the prediction.

Research limitations/implications

It would be challenging and interesting work to extend the current method to nonlinear problems.

Practical implications

The method presented herein provides an effective solution for the fast prediction of unsteady flow fields in the design of turbomachinery.

Originality/value

A flow prediction method based on sparsity-promoting dynamic mode decomposition was proposed and applied into a RT to predict the flow field under various operating conditions (both rotation speed and flow rate change) with reasonable prediction accuracy. Compared with numerical calculations or experiments, the proposed method can greatly reduce time and resource consumption for flow field visualization at design stage. Most of the physics information of the unsteady flow was maintained by reconstructing the flow modes in the prediction method, which may contribute to a deeper understanding of physical mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2024

Umair Khan, Aurang Zaib, Anuar Ishak, El-Sayed M. Sherif and Piotr Wróblewski

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable…

Abstract

Purpose

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable them to be controlled and manipulated when ferrofluids are exposed to magnetic fields. This study aims to inspect the features of unsteady stagnation point flow (SPF) and heat flux from the surface by incorporating ferromagnetic particles through a special kind of second-grade fluid (SGF) across a movable sheet with a nonlinear heat source/sink and magnetic field effect. The mass suction/injection and stretching/shrinking boundary conditions are also inspected to calculate the fine points of the features of multiple solutions.

Design/methodology/approach

The leading equations that govern the ferrofluid flow are reduced to a group of ordinary differential equations by applying similarity variables. The converted equations are numerically solved through the bvp4c solver. Afterward, study and discussion are carried out to examine the different physical parameters of the characteristics of nanofluid flow and thermal properties.

Findings

Multiple solutions are revealed to happen for situations of unsteadiness, shrinking as well as stretching sheets. Greater suction slows the separation of the boundary layers and causes the critical values to expand. The region where the multiple solutions appear is observed to expand with increasing values of the magnetic, non-Newtonian and suction parameters. Moreover, the fluid velocity significantly uplifts while the temperature declines due to the suction parameter.

Originality/value

The novelty of the work is to deliberate the impact of mass suction/injection on the unsteady SPF through the special second-grade ferrofluids across a movable sheet with an erratic heat source/sink. The confirmed results provide a very good consistency with the accepted papers. Previous studies have not yet fully explored the entire analysis of the proposed model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 July 2023

Amit Kumar, Abhipsa P. Dash, Atul Kumar Ray, Priyabrata Sethy and Idamakanti Kasireddy

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different…

Abstract

Purpose

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different shapes of nanoparticles (copper [Cu] and aluminium oxide [Al2O3]) in the base fluid (water [H2O]). The influence of different shapes (sphere, brick, cylinder, platelets and blades) of nanoparticle in water-based hybrid nanofluid is also investigated.

Design/methodology/approach

To analyse the nanomaterial, the flow model is established, and in doing so, the Prandtl’s boundary layer theory is incorporated into the present model. The bvp4c approach, i.e. finite difference method, is used to find the numerical solution of differential equations that is controlling the fluid flow. The effect of relevant flow parameters on nanofluid temperature and velocity profile is demonstrated in detailed explanations using graphs and bar charts, whereas numerical results for Nusselt number and the skin’s coefficient for various form parameters are presented in tabular form.

Findings

The rate of heat transfer is least for spherical-shaped nanoparticle because of its smoothness, symmetricity and isotropic behaviour. The rate of heat transfer is highest for blade-shaped nanoparticles as compared to other shapes (brick, cylindrical and platelet) of nanoparticles because the blade-shaped nanoparticles causes comparatively more turbulence flow in the nanofluid than other shapes of nanoparticle. Heat generation affects the temperature distribution and, hence, the particle deposition rate. The absorption of heat extracts heat and reduce the temperature across the rotating sphere. The heat generation/absorption parameter plays an important role in establishing and maintaining the temperature around the rotating sphere.

Research limitations/implications

The numerical study is valid with the exception of the fluctuation in density that results in the buoyancy force and the functional axisymmetric nanofluid transport has constant thermophysical characteristics. In addition, this investigation is also constrained by the assumptions that there is no viscosity dissipation, no surface slippage and no chemically activated species. The hybrid nanofluid Al2O3–Cu/H2O is an incompressible and diluted suspension. The single-phase hybrid nanofluid model is considered in which the relative velocity of water (H2O) and hybrid nanoparticles (Al2O3–Cu) is the same and they are in a state of thermal equilibrium.

Practical implications

Study on convective flow across a revolving sphere has its applications found in electrolysis management, polymer deposition, medication transfer, cooling of spinning machinery segments, spin-stabilized missiles and other industrial and technical applications.

Originality/value

The originality of the study is to investigate the effect of shape factor on the flow of electrically conducting hybrid nanofluid past a rotating sphere with heat generation/absorption and magnetic field. The results are validated and provide extremely positive balance with the recognised articles. The results of the study provide many appealing applications that merit further study of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2023

Muhammad Faisal, Iftikhar Ahmad and Abdur Rashid

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and…

Abstract

Purpose

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid.

Design/methodology/approach

The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters.

Findings

It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled…

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2022

Tigistu Yisihak Ukumo, Adane Abebe, Tarun Kumar Lohani and Muluneh Legesse Edamo

The purpose of this paper is to prepare flood hazard map and show the extent of flood hazard under climate change scenarios in Woybo River catchment. The hydraulic model…

Abstract

Purpose

The purpose of this paper is to prepare flood hazard map and show the extent of flood hazard under climate change scenarios in Woybo River catchment. The hydraulic model, Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the floods under future climate scenarios. The impact of climate changes on severity of flooding was evaluated for the mid-term (2041–2070) and long-term (2071–2100) with relative to a baseline period (1971–2000).

Design/methodology/approach

Future climate scenarios were constructed from the bias corrected outputs of five regional climate models and the inflow hydrographs for 10, 25, 50 and 100 years design floods were derived from the flow which generated from HEC-hydrological modeling system; that was an input for the HEC-RAS model to generate the flood hazard maps in the catchment.

Findings

The results of this research show that 25.68% of the study area can be classified as very high hazard class while 28.56% of the area is under high hazard. It was also found that 20.20% is under moderate hazard and about 25.56% is under low hazard class in future under high emission scenario. The projected area to be flooded in far future relative to the baseline period is 66.3 ha of land which accounts for 62.82% from the total area. This study suggested that agricultural/crop land located at the right side of the Woybo River near the flood plain would be affected more with the 25, 50 and 100 years design floods.

Originality/value

Multiple climate models were assessed properly and the ensemble mean was used to prepare flood hazard map using HEC-RAS modeling.

Article
Publication date: 10 May 2024

Manjeet Kumar, Pradeep Kaswan and Manjeet Kumari

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an…

Abstract

Purpose

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an inclined magnetic field within a porous medium on a nonlinear stretching plate. This investigation is conducted by using neural networking techniques, specifically using neural networks-backpropagated with the Levenberg–Marquardt scheme (NN-BLMS).

Design/methodology/approach

The initial nonlinear coupled PDEs system that represented the MRCNFM is transformed into an analogous nonlinear ODEs system by the adoption of similarity variables. The reference data set is created by varying important MHD-MRCNFM parameters using the renowned Lobatto IIIA solver. The numerical reference data are used in validation, testing and training sets to locate and analyze the estimated outcome of the created NN-LMA and its comparison with the corresponding reference solution. With mean squared error curves, error histogram analysis and a regression index, better performance is consistently demonstrated. Mu is a controller that controls the complete training process, and the NN-BLMS mainly concentrates on the higher precision of nonlinear systems.

Findings

The peculiar behavior of the appropriate physical parameters on nondimensional shapes is demonstrated and explored via sketches and tables. For escalating amounts of inclination angle and Brinkman number, a viable entropy profile is accomplished. The angular velocity curve grows as the rotation viscosity and surface condition factors rise. The dominance of friction-induced irreversibility is observed in the vicinity of the sheet, whereas in the farthest region, the situation is reversed with heat transfer playing a more significant role in causing irreversibilities.

Originality/value

To improve the efficiency of any thermodynamic system, it is essential to identify and track the sources of irreversible heat losses. Therefore, the authors analyze both flow phenomena and heat transport, with a particular focus on evaluating the generation of entropy within the system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 187