Search results

1 – 10 of 359
Article
Publication date: 1 May 1945

F. Campbell Rose

THE balancing of rotating parts can be effected either on a balancing machine, or by means of vibration measurements carried out on the completed assembly.

Abstract

THE balancing of rotating parts can be effected either on a balancing machine, or by means of vibration measurements carried out on the completed assembly.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 April 2019

Prem Singh and Himanshu Chaudhary

This paper aims to present the optimum two-plane discrete balancing procedure for rigid rotor. The discrete two-plane balancing in which rotor is balanced to minimize the residual…

Abstract

Purpose

This paper aims to present the optimum two-plane discrete balancing procedure for rigid rotor. The discrete two-plane balancing in which rotor is balanced to minimize the residual effects or the reactions on the bearing supports using discrete parameters such as masses and their angular positions on two balancing planes.

Design/methodology/approach

Therefore as a multi-objective optimization problem is formulated by considering reaction forces on the bearing supports as a multi objective functions and discrete parameters on each balancing plane as design variables. These multi-objective functions are converted into a single-objective function using appropriate weighting factors. Further, this optimization problem is solved using discrete optimization algorithm, based on Jaya algorithm.

Findings

The performance of the discrete Jaya algorithm is compared to genetic algorithm (GA) algorithm. It is found that Jaya algorithm is computationally more efficient than GA algorithm. A number of masses per plane are used to balance the rotor. A comparison of reaction forces using number of masses per plane is investigated.

Originality/value

The effectiveness of the proposed methodology is tested by the balancing problem of rotor available in the literature. The influence of a number of balance masses on bearing forces and objective function are discussed. ADAMS software is used for validation of a developed balancing approach.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 November 2019

Mohamed Benadda, Ahmed Bouzidane, Marc Thomas and Raynald Guilbault

This paper aims to propose a new hydrostatic squeeze film damper compensated with electrorheological valve restrictors to control the nonlinear dynamic behavior of a rigid rotor

Abstract

Purpose

This paper aims to propose a new hydrostatic squeeze film damper compensated with electrorheological valve restrictors to control the nonlinear dynamic behavior of a rigid rotor caused by high unbalance eccentricity ratio. To investigate the effect of electrorheological valve restrictors on the dynamic behavior of a rigid rotor, a nonlinear model is developed and presented.

Design/methodology/approach

The nonlinear results are compared with those obtained from a linear approach. The results show good agreement between the linear and nonlinear methods when the unbalanced force is small. The effects of unbalance eccentricity ratio and electric field on the vibration response and the bearing transmitted force are investigated using the nonlinear models.

Findings

The results of simulation performed that the harmonics generated by high unbalance eccentricities can be reduced by using hydrostatic squeeze film damper compensated with electrorheological valve restrictors.

Originality/value

The numerical results demonstrate that this type of smart hydrostatic squeeze film damper provides to hydrostatic designers a new bearing configuration suitable to control rotor vibrations and bearing transmitted forces, especially for high speed.

Article
Publication date: 1 June 1955

P.R. Payne

In‐plane vibration of a balanced helicopter rotor is caused by variations with azimuth of the in‐plane forces acting on individual blades. These forces may be summarized under…

80

Abstract

In‐plane vibration of a balanced helicopter rotor is caused by variations with azimuth of the in‐plane forces acting on individual blades. These forces may be summarized under three headings: ‘Induced forces’ caused by the inclination of elemental lift vectors relative to the axis of rotation. ‘Profile drag forces’: variations are caused by changes with azimuth angle of the angle and airspeed of the individual blade elements. ‘Coriolis forces’, which are caused by blade flapping, which brings about a variation of blade moment of inertia about the axis of rotation. Equations are developed in this paper for the resultant hub force due to each of these forces, on the assumptions of small flapping hinge offset. It is assumed that blades are linearly twisted and tapered, an assumption which in practice can be applied to any normal rotor. It is shown that by suitably inclining the mechanical axis it is possible to balance out the worst induced and profile drag vibrations by the coriolis one, which can be made to have opposite sign. If the mechanical axis is fixed in the fuselage, this suppression is fully effective for one flight condition only. In multi‐rotor helicopters, vibration suppression can be extended over a much wider range by varying the fuselage attitude. The logical result of this analysis is, for single rotor helicopters, a floating mechanical axis which can be adjusted or trimmed by the pilot. This would be quite simple to do on a tip‐driven rotor, and has already been achieved with a mechanical drive on the Doman helicopter. The more important causes of vibration from an unbalanced rotor are next con‐sidered, attention here being confined principally to fully articulated rotors, which are the most difficult to balance because the drag hinges tend to magnify all in‐accuracies in finish and balance. From a brief discussion of the vertical vibration of an imperfect rotor it is shown that some contemporary methods of ‘tracking’ are fundamentally wrong. Finally the vibration due to tip‐mounted power units is described. In discussing the effect of a vibratory force on a helicopter a simple response chart is developed, and it is thought that its use could well be accepted as a simple standard for general assessment purposes. In the development of equations for vibration the following points of general technical interest are put forward: An equation for induced torque is developed which includes a number of hitherto neglected parameters. A new form of equation for mean lift coefficient of a blade is suggested. The simple Hafner criterion for flight envelopes is shown to give rise to considerable error, and the use of Eq. (28) is suggested in its place. The variation of profile torque with forward speed is given, and the increase due to ? varying round the disk is expressed as an explicit equation, thus allowing considerable improvement in the present methods of allowing for this effect.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 29 October 2018

Zebin Yang, Xi Chen, Xiaodong Sun, Chunfeng Bao and Jiang Lu

The purpose of this paper is to handle the problem of the radial disturbance caused by rotor mass unbalance and load change in a bearingless induction motor (BIM).

Abstract

Purpose

The purpose of this paper is to handle the problem of the radial disturbance caused by rotor mass unbalance and load change in a bearingless induction motor (BIM).

Design/methodology/approach

The active disturbance rejection controller (ADRC) is used to replace the traditional PI controller, and a cubic interpolation method is used to fit the nonlinear function of ADRC, so as to improve the control performance. Meanwhile, a disturbance observer is applied to the suspension system, and the observed disturbance acceleration is compensated to the suspension system in the form of current; thus, the suppression of the rotor radial disturbance is realized.

Findings

The proposed method can effectively suppress the radial disturbance of the rotor, meliorate the suspension performance of the motor and enhance the anti-interference ability of the system. Besides, it has excellent dynamic and static performance.

Originality/value

A radial disturbance control strategy of the BIM based on improved ADRC is proposed is to suppress the radial disturbance of the rotor. The improved ADRC is to enhance the control performance of the system, and the disturbance observer is designed to observe and compensate the disturbance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 1957

J. Morris

It is shown that the clearances between the journals of a shaft and the bearings in which it runs may give rise to a species of unbalance and that unless this unbalance is…

Abstract

It is shown that the clearances between the journals of a shaft and the bearings in which it runs may give rise to a species of unbalance and that unless this unbalance is corrected by a counter unbalance in the shaft or loads carried by it, steady motion is impossible in certain ranges of speed. The treatment presented is concerned with conditions for steady circular motion rather than with transient disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 April 2019

Bhumi Ankit Shah and Dipak P. Vakharia

Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack…

206

Abstract

Purpose

Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack at very early stage in the rotating machinery. Identification requires a reliable and accurate vibration analysis technique for achieving the objective of the study. The purpose of this paper is to detect the crack in the rotating machinery by measuring vibration parameters at different measurement locations.

Design/methodology/approach

Two different types of cracks were simulated in these experiments. Experiments were conducted using healthy shaft, crack simulated shaft and glued shaft with and without added unbalance to observe the changes in vibration pattern, magnitude and phase. Deviation in vibration response allows the identification of crack and its location. Initial data were acquired in the form of time waveform. Run-up and coast-down measurements were taken to find the critical speed. The wavelet packet energy analysis technique was used to get better localization in time and frequency zone.

Findings

The presence of crack changes the dynamic behavior of the rotor. 1× and 2× harmonic components for steady-state test and critical speed for transient test are important parameters in condition monitoring to detect the crack. To separate the 1× and 2× harmonic component in the different wavelet packets, original signal is decomposed in nine levels. Wavelet packet energy analysis is carried out to find the intensity of the signal due to simulated crack.

Originality/value

Original signals obtained from the experiment test set up may contain noise component and dominant frequency components other than the crack. Wavelet packets contain the crack-related information that are identified and separated in this study. This technique develops the condition monitoring procedure more specific about the type of the fault and accurate due to the separation of specific fault features in different wavelet packets. From the experiment end results, it is found that there is significant rise in a 2× energy component due to crack in the shaft. The intensity of a 1× energy component depends upon the shaft crack and unbalance orientation angle.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 September 2013

Dingding Zhao, Ping Cai and Wei Qi

– The purpose of this paper is to propose a method to remit or mitigate deterioration resulting from the influence of short data length to existing signal extracting methods.

Abstract

Purpose

The purpose of this paper is to propose a method to remit or mitigate deterioration resulting from the influence of short data length to existing signal extracting methods.

Design/methodology/approach

Careful design of the pre-filtering circuits to refrain most of the noise and disturbance and remove the influence of operation speed of the concerned balancing machine. Based on the analysis on the spectral feature of the unbalance vibration signal, a pre-filtering circuit is designed, then the signal extension method based on AR prediction model are discussed and used to prolong sampled signal.

Findings

With the extension method, sampled signal can be extended to required length to enhance the performance of refraining nearby frequency disturbance. The results of simulation and field experiments demonstrate the feasibility of the presented extension method.

Practical implications

Improved measurement efficiency of balancing machine and provided a method to trade off between measurement accuracy and measurement efficiency.

Originality/value

The paper presents a way to improve extraction accuracy and frequency resolution with limited cycles of unbalance vibration signal.

Article
Publication date: 2 January 2009

Hardo May, Jan Hoffmann, Wolf‐Ruediger Canders and Ryszard Palka

The purpose of this paper is to focus on superconducting magnetic bearings (SMB). SMB for high‐speed rotors are contact free and offer inherently stable operations thus they are…

Abstract

Purpose

The purpose of this paper is to focus on superconducting magnetic bearings (SMB). SMB for high‐speed rotors are contact free and offer inherently stable operations thus they are best qualified for the support of horizontally aligned rotors of turbo machines for gas‐compressors and expanders, e.g. special attentions have to be concentrated on the force activation of the SMB without dislocating the rotor from the aligned position.

Design/methodology/approach

For the activation of cylindrically shaped SMB‐designs, appropriate units with movable superconductor parts have been developed. They permit the maintenance of the rotor together with the field excitation unit in the aligned un‐displaced position. The eddy currents in the conducting cylinder of an EDD are induced by spatial fluctuations of the field and thus have been determined by transient calculations. The mechanical oscillation of the rotor was considered by a step‐wise displacement of the damper‐plate.

Findings

As the rotors of both the machine and the SMB operate best with reduced clearance to the stators, the shaft cannot be displaced to activate the force of horizontally aligned superconducting bearing assemblies. Thus, for cylindrical, co‐axial SMB‐designs the stator is shaped as two half shells embracing the SMB‐rotor. For the force activation the following procedure has to be carried out within the Dewar without displacing the shaft: at first the half shells are retreated from the rotor (warm HTSC) and after the cooling they are moved against the inner part of the warm bore thus generating the forces to compensate the weight and disturbances of the rotor. In case of planar‐cylindrical SMB‐designs, which are specially suited for extreme high speed applications, the bearing stators consist of a planar cylinder plate of HTSC‐bulks. The force activation is realised by lifting and descending the Dewar with the HTSC parts as a whole independently from the position of the rotor. The radial forces of the EDD and their partitioning in components which contribute to the damping‐ and to the spring‐force have been determined for different frequencies up to 160 Hz. To achieve accuracies in the percent range, the values of the time steps have to be well adapted to the electro dynamic conditions as oscillation frequency and conductivity.

Originality/value

Only the presented activation devices with movable HTSC stator parts enable the application of SMB even for horizontally aligned high‐speed rotors with reduced radial clearance. The recently developed fully integrated EDD secure a safe run of the rotor even during the speed up – passing the eigenfrequency in particular.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 June 2007

Tian Han, Bo‐Suk Yang and Zhong‐Jun Yin

The purpose of this paper is to identify the efficiency of vibration signals for fault diagnosis system of induction motors.

1354

Abstract

Purpose

The purpose of this paper is to identify the efficiency of vibration signals for fault diagnosis system of induction motors.

Design/methodology/approach

A fault diagnosis system for induction motors using vibration signals is designed based on pattern recognition. Genetic algorithm is used for feature reduction and neural network tuning.

Findings

The usage of genetic algorithm improves the system performance through selecting significant features and optimizing network structure. The efficiency of vibration signals is demonstrated.

Practical implications

Condition monitoring and fault diagnosis for induction motors is one of the main industry maintenance parts. Motors faults usually result in whole production line breakdown. In this paper, one fault diagnosis system is proposed for induction motors based on feature recognition through combination of feature extraction, genetic algorithm and neural network techniques. From the paper, one can learn practically the whole procedure of feature‐based fault diagnosis system and the efficiency of GA and vibration signals for motor fault diagnosis. One real test has been done to validate the system performance. The results indicate that this system is promising for the real application in industry.

Originality/value

The use of genetic algorithm for feature selection and neural network tuning; the choice of vibration analysis for fault diagnosis of induction motor.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 359