Search results

1 – 10 of 145
Article
Publication date: 13 July 2021

Ran Bi, Shady Ali, Eric Savory and Chao Zhang

This study aims (1) to numerically investigate the characteristics of a human cough jet in a quiescent environment, such as the variation with time of the velocity field…

Abstract

Purpose

This study aims (1) to numerically investigate the characteristics of a human cough jet in a quiescent environment, such as the variation with time of the velocity field, streamwise jet penetration and maximum jet width. Two different turbulence modelling approaches, the unsteady Reynolds-averaged Navier–Stokes (URANS) and large eddy simulation (LES), are used for comparison purposes. (2) To validate the numerical results with the experimental data.

Design/methodology/approach

Two different approaches, the URANS and LES, are used to simulate a human cough jet flow. The numerical results for the velocity magnitude contours and the spatial average of the two-dimensional velocity magnitude over the corresponding particle image velocimetry (PIV) field of view are compared with the relevant PIV measurements. Similarly, the numerical results for the streamwise velocity component at the hot-wire probe location are compared with the hot-wire anemometry (HWA) measurements. Furthermore, the numerical results for the streamwise jet penetration are compared with the data from the previous experimental work.

Findings

Based on the comparison with the URANS approach and the experimental data, the LES approach can predict the temporal development of a human cough jet reasonably well. In addition, the maximum width of the cough jet is found to grow practically linearly with time in the far-field, interrupted-jet stage, while the corresponding axial distance from the mouth of the jet front increases with time in an approximately quadratic manner.

Originality/value

Currently, no numerical study of human cough flow has been conducted using the LES approach due to the following challenges: (1) the computational cost is much higher than that of the URANS approach; (2) it is difficult to specify the turbulent fluctuations at the mouth for the cough jet properly; (3) it is necessary to define the appropriate conditions for the droplets to obtain statistically valid results. Therefore, this work fills this research gap.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2001

A. Nakayama and K. Miyashita

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS…

Abstract

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS and large‐eddy simulation (LES) results. The URANS calculation with sufficient grid resolution near solid surface and an appropriate near‐wall model has been shown to simulate much of the large‐scale unsteadiness and some of the turbulent motion for flows with and without separation. Although the results with unadjusted model constants do not show an overwhelming improvement over a standard two‐equation model, it is demonstrated that it may be improved and, more importantly, can be generalized to a new simulation technique by refining the model, considering such factors as grid‐dependent length scales and by making a three‐dimensional calculation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2021

Anuj Kumar Shukla and Anupam Dewan

Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady…

Abstract

Purpose

Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration.

Design/methodology/approach

Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes.

Findings

It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number.

Originality/value

Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2022

P.K. Ullas, Dhiman Chatterjee and S. Vengadesan

Understanding the interaction of turbulence and cavitation is an essential step towards better controlling the cavitation phenomenon. The purpose of this paper is to bring out the…

Abstract

Purpose

Understanding the interaction of turbulence and cavitation is an essential step towards better controlling the cavitation phenomenon. The purpose of this paper is to bring out the efficacy of different modelling approaches to predict turbulence and cavitation-induced phase changes.

Design/methodology/approach

This paper compares the dynamic cavitation (DCM) and Schnerr–Sauer models. Also, the effects of different modelling methods for turbulence, unsteady Reynolds-averaged Navier–Stokes (URANS) and detached eddy simulations (DES) are also brought out. Numerical predictions of internal flow through a venturi are compared with experimental results from the literature.

Findings

The improved predictive capability of cavitating structures by DCM is brought out clearly. The temporal variation of the cavity size and velocity illustrates the involvement of re-entrant jet in cavity shedding. From the vapour fraction contours and the attached cavity length, it is found that the formation of the re-entrant jet is stronger in DES results compared with that by URANS. Variation of pressure, velocity, void fraction and the mass transfer rate at cavity shedding and collapse regions are presented. Wavelet analysis is used to capture the shedding frequency and also the corresponding occurrence of features of cavity collapse.

Originality/value

Based on the performance, computational time and resource requirements, this paper shows that the combination of DES and DCM is the most suitable option for predicting turbulent-cavitating flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2010

A.C. Benim, M.P. Escudier, A. Nahavandi, A.K. Nickson, K.J. Syed and F. Joos

The main purpose of the paper is the validation of different modelling strategies for turbulent swirling flow of an incompressible fluid in an idealized swirl combustor.

Abstract

Purpose

The main purpose of the paper is the validation of different modelling strategies for turbulent swirling flow of an incompressible fluid in an idealized swirl combustor.

Design/methodology/approach

Experiments have been performed and computations carried out for a water test rig, for a Reynolds number of 4,600 based on combustor inlet mean axial velocity and diameter. Two cases have been investigated, one low swirl and the other high swirl intensity. Measurements of time‐averaged velocity components and corresponding rms turbulence intensities were measured using laser Doppler anemometer, along radial traverses at different axial locations. In the three‐dimensional, unsteady computations, large eddy simulation (LES) and URANS (Unsteady Reynolds Averaged Navier‐Stokes Equations or Reynolds Averaged Numerical Simulations) RSMs (Reynolds‐stress models) are basically employed as modelling strategies for turbulence. To model subgrid‐scale turbulence for LES, the models due to Smagorinsky and Voke are used. No‐model LES and coarse‐grid direct numerical simulation computations are also performed for one of the cases.

Findings

The predictions are compared with the measurements and reveal that LES provided the best overall accuracy for all of the cases, whereas no significant difference between the Smagorinsky and Voke models are observed for the time‐averaged velocity components.

Originality/value

This paper provides additional valuable information on the performance of various modelling strategies for turbulent swirling flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 October 2018

Ignazio Maria Viola, Vincent Chapin, Nicola Speranza and Marco Evangelos Biancolini

There is an increasing interest in airfoils that modify their shape to adapt at the flow conditions. As an example of application, the authors search the optimal 4-digit NACA…

Abstract

Purpose

There is an increasing interest in airfoils that modify their shape to adapt at the flow conditions. As an example of application, the authors search the optimal 4-digit NACA airfoil that maximizes the lift-over-drag ratio for a constant lift coefficient of 0.6, from Re = 104 to 3 × 106.

Design/methodology/approach

The authors consider a γ−Reθt transition model and a κω SST turbulence model with a covariance matrix adaptation evolutionary optimization algorithm. The shape is adapted by radial basis functions mesh morphing using four parameters (angle of attack, thickness, camber and maximum camber position). The objective of the optimization is to find the airfoil that enables a maximum lift-over-drag ratio for a target lift coefficient of 0.6.

Findings

The computation of the optimal airfoils confirmed the expected increase with Re of the lift-over-drag ratio. However, although the observation of efficient biological fliers suggests that the thickness increases monotonically with Re, the authors find that it is constant but for a 1.5 per cent step increase at Re = 3 × 105.

Practical implications

The authors propose and validate an efficient high-fidelity method for the shape optimization of airfoils that can be adopted to define robust and reliable industrial design procedures.

Originality/value

The authors show that the difference in the numerical error between two-dimensional and three-dimensional simulations is negligible, and that the numerical uncertainty of the two-dimensional simulations is sufficiently small to confidently predict the aerodynamic forces across the investigated range of Re.

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Jernej Drofelnik, Andrea Da Ronch, Matteo Franciolini and Andrea Crivellini

This paper aims to present a numerical method based on computational fluid dynamics that allows investigating the buffet envelope of reference equivalent wings at the equivalent…

Abstract

Purpose

This paper aims to present a numerical method based on computational fluid dynamics that allows investigating the buffet envelope of reference equivalent wings at the equivalent cost of several two-dimensional, unsteady, turbulent flow analyses. The method bridges the gap between semi-empirical relations, generally dominant in the early phases of aircraft design, and three-dimensional turbulent flow analyses, characterised by high costs in analysis setups and prohibitive computing times.

Design/methodology/approach

Accuracy in the predictions and efficiency in the solution are two key aspects. Accuracy is maintained by solving a specialised form of the Reynolds-averaged Navier–Stokes equations valid for infinite-swept wing flows. Efficiency of the solution is reached by a novel implementation of the flow solver, as well as by combining solutions of different fidelity spatially.

Findings

Discovering the buffet envelope of a set of reference equivalent wings is accompanied with an estimate of the uncertainties in the numerical predictions. Just over 2,000 processor hours are needed if it is admissible to deal with an uncertainty of ±1.0° in the angle of attack at which buffet onset/offset occurs. Halving the uncertainty requires significantly more computing resources, close to a factor 200 compared with the larger uncertainty case.

Practical implications

To permit the use of the proposed method as a practical design tool in the conceptual/preliminary aircraft design phases, the method offers the designer with the ability to gauge the sensitivity of buffet on primary design variables, such as wing sweep angle and chord to thickness ratio.

Originality/value

The infinite-swept wing, unsteady Reynolds-averaged Navier–Stokes equations have been successfully applied, for the first time, to identify buffeting conditions. This demonstrates the adequateness of the proposed method in the conceptual/preliminary aircraft design phases.

Article
Publication date: 10 April 2020

Wienczyslaw Stalewski and Katarzyna Surmacz

This paper aims to present the novel methodology of computational simulation of a helicopter flight, developed especially to investigate the vortex ring state (VRS) – a dangerous…

Abstract

Purpose

This paper aims to present the novel methodology of computational simulation of a helicopter flight, developed especially to investigate the vortex ring state (VRS) – a dangerous phenomenon that may occur in helicopter vertical or steep descent. Therefore, the methodology has to enable modelling of fast manoeuvres of a helicopter such as the entrance in and safe escape from the VRS. The additional purpose of the paper is to discuss the results of conducted simulations of such manoeuvres.

Design/methodology/approach

The developed methodology joins several methods of computational fluid dynamics and flight dynamic. The approach consists of calculation of aerodynamic forces acting on rotorcraft, by solution of the unsteady Reynold-averaged Navier–Stokes (URANS) equations using the finite volume method. In parallel, the equations of motion of the helicopter and the fluid–structure-interaction equations are solved. To reduce computational costs, the flow effects caused by rotating blades are modelled using a simplified approach based on the virtual blade model.

Findings

The developed methodology of computational simulation of fast manoeuvres of a helicopter may be a valuable and reliable tool, useful when investigating the VRS. The presented results of conducted simulations of helicopter manoeuvres qualitatively comply with both the results of known experimental studies and flight tests.

Research limitations/implications

The continuation of the presented research will primarily include quantitative validation of the developed methodology, with respect to well-documented flight tests of real helicopters.

Practical implications

The VRS is a very dangerous phenomenon that usually causes a sudden decrease of rotor thrust, an increase of the descent rate, deterioration of manoeuvrability and deficit of power. Because of this, it is difficult and risky to test the VRS during the real flight tests. Therefore, the reliable computer simulations performed using the developed methodology can significantly contribute to increase helicopter flight safety.

Originality/value

The paper presents the innovative and original methodology for simulating fast helicopter manoeuvres, distinguished by the original approach to flight control as well as the fact that the aerodynamic forces acting on the rotorcraft are calculated during the simulation based on the solution of URANS equations.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 June 2020

Chaoyue Wang, Fujun Wang, Changliang Ye, Benhong Wang and Zhichao Zou

Tip leakage vortex flow (TLV) is a common flow phenomenon in the axial-flow hydraulic machinery. High-efficiency simulation of TLV is still not an easy task because of the complex…

Abstract

Purpose

Tip leakage vortex flow (TLV) is a common flow phenomenon in the axial-flow hydraulic machinery. High-efficiency simulation of TLV is still not an easy task because of the complex turbulent vortex-cavitation interactions. As an important basis of CFD, turbulence model directly affects the efficient computation of TLV. The purpose of this paper is to evaluate the newly developed MST turbulence model in predicting the TLV flows.

Design/methodology/approach

By using the MST turbulence model and the ZGB cavitation model, numerical simulations of the TLV generated by a NACA0009 hydrofoil were performed under the cavitation-free and cavitation conditions, and the results were compared with the available experimental data.

Findings

The important features of TLV are well captured by the MST-based simulation scheme, and the problem of under-predicting the cavitating TLV tube is well solved. Turbulent viscosity is reasonably adjusted in the TLV core regions, and the LES-like mode is activated, which is beneficial to obtain more turbulent information on the same URANS grids. The requirements of grid size and time step of the MST model are much lower than that of the LES method, thereby weighing a good balance between the simulation accuracy and computation cost.

Originality/value

The MST turbulence model is suitable for the high-efficiency simulation of the TLV flows, which can lay a good foundation for efficient engineering computations of the cavitating TLV in the axial-flow hydraulic machinery.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 145