Search results

1 – 10 of 16
Article
Publication date: 22 May 2024

Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Muhammad Iqbal and Adnan Rasul

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite…

Abstract

Purpose

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite reinforcement greatly depends on the orientation of fibres in the composite material. Joints are the most critical part of tubular structures. Various existing studies have identified optimal reinforcement orientations for a single load component, but none has addressed the combined load case, even though most practical loads are multiplanar.

Design/methodology/approach

This study investigates the optimal orientation of composite reinforcement for reducing stress concentration factors (SCF) of tubular KT-joints. The joint reinforcement was modelled and simulated using ANSYS. A parametric study was carried out to determine the effect of the orientations of reinforcement in the interface region on SCF at every 15° offset along the weld toe using linear extrapolation of principal stresses. The impact of orientation for uniplanar and multiplanar loads was investigated, and a general result about optimum orientation was inferred.

Findings

It was found that the maximum decrease of SCF is achieved by orienting the fibres of composite reinforcement along the maximum SCF. Notably, the optimal direction for any load configuration was consistently orthogonal to the weld toe of the chord-brace interface. As such, unidirectional composites wrapped around the brace axis, covering both sides of the brace-chord interface, are most effective for SCF reduction.

Originality/value

The findings of this study are crucial for adequate reinforcement of tubular joints using composites, offering a broader and universally applicable optimum orientation that transcends specific joint and load configuration.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 June 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Mohsin Iqbal and Khurshid Alam

Stress concentration factors (SCFs) are commonly used to assess the fatigue life of tubular T-joints in offshore structures. SCFs are usually estimated from parametric equations…

Abstract

Purpose

Stress concentration factors (SCFs) are commonly used to assess the fatigue life of tubular T-joints in offshore structures. SCFs are usually estimated from parametric equations derived from experimental data and finite element analysis (FEA). However, these equations provide the SCF at the crown and saddle points of tubular T-joints only, while peak SCF might occur anywhere along the brace. Using the SCF at the crown and saddle can lead to inaccurate hotspot stress and fatigue life estimates. There are no equations available for calculating the SCF along the T-joint's brace axis under in-plane and out-of-plane bending moments.

Design/methodology/approach

In this work, parametric equations for estimating SCFs are developed based on the training weights and biases of an artificial neural network (ANN), as ANNs are capable of representing complex correlations. 1,250 finite element simulations for tubular T-joints with varying dimensions subjected to in-plane bending moments and out-of-plane bending moments were conducted to obtain the corresponding SCFs for training the ANN.

Findings

The ANN was subsequently used to obtain equations to calculate the SCFs based on dimensionless parameters (α, β, γ and τ). The equations can predict the SCF around the T-joint's brace axis with an error of less than 8% and a root mean square error (RMSE) of less than 0.05.

Originality/value

Accurate SCF estimation for determining the fatigue life of offshore structures reduces the risks associated with fatigue failure while ensuring their durability and dependability. The current study provides a systematic approach for calculating the stress distribution at the weld toe and SCF in T-joints using FEA and ANN, as ANNs are better at approximating complex phenomena than typical data fitting techniques. Having a database of parametric equations enables fast estimation of SCFs, as opposed to costly testing and time-consuming FEA.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 May 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis and Mohsin Iqbal

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental…

Abstract

Purpose

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental testing and finite element analysis (FEA) are utilized to estimate the SCF efficiently. The mathematical equations provide the SCF at the crown and saddle of tubular T-joints for various load scenarios. Offshore structures are subjected to a wide range of stresses from all directions, and the hotspot stress might occur anywhere along the brace. It is critical to incorporate stress distribution since using the single-point SCF equation can lead to inaccurate hotspot stress and fatigue life estimates. As far as we know, there are no equations available to determine the SCF around the axis of the brace.

Design/methodology/approach

A mathematical model based on the training weights and biases of artificial neural networks (ANNs) is presented to predict SCF. 625 FEA simulations were conducted to obtain SCF data to train the ANN.

Findings

Using real data, this ANN was used to create mathematical formulas for determining the SCF. The equations can calculate the SCF with a percentage error of less than 6%.

Practical implications

Engineers in practice can use the equations to compute the hotspot stress precisely and rapidly, thereby minimizing risks linked to fatigue failure of offshore structures and assuring their longevity and reliability. Our research contributes to enhancing the safety and reliability of offshore structures by facilitating more precise assessments of stress distribution.

Originality/value

Precisely determining the SCF for the fatigue life of offshore structures reduces the potential hazards associated with fatigue failure, thereby guaranteeing their longevity and reliability. The present study offers a systematic approach for using FEA and ANN to calculate the stress distribution along the weld toe and the SCF in T-joints since ANNs are better at approximating complex phenomena than standard data fitting techniques. Once a database of parametric equations is available, it can be used to rapidly approximate the SCF, unlike experimentation, which is costly and FEA, which is time consuming.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 July 2024

Huijun An and Lingbao Kong

Solder joint inspection plays a critical role in various industries, with a focus on integrated chip (IC) solder joints and metal surface welds. However, the detection of tubular…

Abstract

Purpose

Solder joint inspection plays a critical role in various industries, with a focus on integrated chip (IC) solder joints and metal surface welds. However, the detection of tubular solder joints has received relatively less attention. This paper aims to address the challenges of detecting small targets and complex environments by proposing a robust visual detection method for pipeline solder joints. The method is characterized by its simplicity, cost-effectiveness and ease of implementation.

Design/methodology/approach

A robust visual detection method based on the characteristics of pipeline solder joints is proposed. With the improved hue, saturation and value (HSV) color space, the method uses a multi-level template matching approach to first segment the pipeline from the background, and then match the endpoint of the pipeline to accurately locate the solder joint. The proposed method leverages the distinctive characteristics of pipeline solder joints and employs an enhanced HSV color space. A multi-level template matching approach is utilized to segment the pipeline from the background and accurately locate the solder joint by matching the pipeline endpoint.

Findings

The experimental results demonstrate the effectiveness of the proposed solder joint detection method in practical detection tasks. The average precision of pipeline weld joint localization exceeds 95%, while the average recall is greater than 90%. These findings highlight the applicability of the method to pipeline solder joint detection tasks, specifically in the context of production lines for refrigeration equipment.

Research limitations/implications

The precision of the method is influenced by the placement angle and lighting conditions of the test specimen, which may pose challenges and impact the algorithm's performance. Potential avenues for improvement include exploring deep learning methods, incorporating additional features and contextual information for localization, and utilizing advanced image enhancement techniques to improve image quality.

Originality/value

The proposed pipeline solder joint detection method offers a novel and practical approach. The simplicity, cost-effectiveness and ease of implementation make it an attractive choice for detecting pipeline solder joints in different industrial applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 August 2024

Felice Di Nicola, Graziano Lonardi, Nicholas Fantuzzi and Raimondo Luciano

The paper aims to analyze the structural integrity of an existing offshore platform located in the Northern Adriatic Sea, followed by the topside decommissioning and the…

Abstract

Purpose

The paper aims to analyze the structural integrity of an existing offshore platform located in the Northern Adriatic Sea, followed by the topside decommissioning and the re-utilization of the jacket as a wind turbine support. The structural integrity assessment against the in-place and the long-term actions is accomplished by using a reduced basis finite element method (RB-FEA) software program assessing the capability of the jacket to be used as a support for wind turbines at the end of its life cycle as oil and gas (O&G) platform.

Design/methodology/approach

The project starts by modeling the jacket, and subsequently, the structural analyses for the in-place loads in operative and extreme conditions are performed. Then, the fatigue analysis is carried out in order to define the cumulative damage necessary to evaluate the possibility to use the jacket as a wind turbine support.

Findings

The results show that the jacket, at the end of the service life as O&G platform, is able to withstand the loads produced by the installation of the wind turbine since the analyses are satisfied even with the conservative approach used which overestimates the thickness loss assuming a linear increasing value during the service life.

Research limitations/implications

Because of the chosen approach, the study presents some limitations, especially concerning the real state of the platform which has been defined considering the thickness loss only. Additionally, a 1D model was used to perform the analyses, and hence, a 3D model could help in evaluating the critical points with higher precision.

Practical implications

The assessment of the structure could be improved by modeling a digital twin of the asset allowing a real-time monitoring which, however, involves a huge amount of data to be processed, so a suitable simulation technology must be used.

Originality/value

The RB-FEA proposed by Akselos is suitable to perform the analyses speeding up the processing of the data even in real time.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 June 2024

Liuyong Wang, Qi Wu, Ziming Song, Yue Li, Xuewen Li, Bing Tu and Yulong Li

This study aims to investigate the wetting behavior of AgCuTi and AgCu filler metals on selective laser melting (SLMed) Ti/TiB2, and to analyze the microstructure and fracture…

Abstract

Purpose

This study aims to investigate the wetting behavior of AgCuTi and AgCu filler metals on selective laser melting (SLMed) Ti/TiB2, and to analyze the microstructure and fracture characteristics of SLMed Ti/TiB2/AgCuTi or AgCu alloy/SLMed Ti/TiB2 brazed joints. The wetting behavior of AgCuTi and AgCu filler metals on the selective laser melted (SLMed) Ti/TiB2 has been studied. The analysis of microstructures and fracture characteristics in vacuum-brazed SLMed Ti/TiB2 substrate, using AgCuTi and AgCu filler metals, has been conducted to elucidate the influence of brazing temperature and alloy composition on the shear strength of the brazed joints.

Design/methodology/approach

Brazing SLMed-Ti/TiB2 in a vacuum using AgCuTi and AgCu filler metals, this study aims to explore the optimal parameters for brazed joints at various brazing temperatures (800°C−950°C).

Findings

The findings suggest that elevated brazing temperatures lead to a more extensive diffusion region in the joint as a result of the partial melting of the filler metal. The joint composition changes from distinct Ti2Cu layer/TiCu layer/filler metal to a-Ti (ss) + ß-Ti (ss)/TiCu. As the brazing temperature increases, the fracture mode shifts from brittle cleavage to ductile fracture, mainly attributed to a decrease in the CuTi within the brazed joint. This change in fracture behavior indicates an improvement in the ductility and toughness of the joint.

Originality/value

The originality of this study lies in the comprehensive analysis of the microstructure and shear strength of vacuum brazing SLMed Ti/TiB2 using AgCuTi and AgCu filler metals.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Book part
Publication date: 24 July 2024

Nishi Malhotra

Tribal communities play an extremely important role in the conservation of the natural resources including water and natural resources like air. Indian tribes have an extremely…

Abstract

Tribal communities play an extremely important role in the conservation of the natural resources including water and natural resources like air. Indian tribes have an extremely important role to play in the protection of the environment and vital resources. Due to the possession of the heritage knowledge, the tribal people are playing an extremely important role in the management of the natural resources. This chapter discusses about the various traditional practices adopted by the tribal groups in water conservation practices.

Article
Publication date: 23 July 2024

Dawn M. Michaelson, Boowon Kim and Veena Chattaraman

This study examines whether design typicality and the communication of the zero-waste concept as a sustainable practice impact consumers’ aesthetic preferences and purchase…

Abstract

Purpose

This study examines whether design typicality and the communication of the zero-waste concept as a sustainable practice impact consumers’ aesthetic preferences and purchase intentions for zero-waste apparel.

Design/methodology/approach

The study employed a 2 (dress design: typical vs atypical) × 2 (dress length: long vs short) × 2 (zero-waste concept communication: present vs absent) mixed factorial experimental design with an online survey of 137 female consumers, ages 19–34.

Findings

Respondents rated typical zero-waste design dresses significantly higher than atypical dresses for aesthetic preferences and purchase intentions. Further, the zero-waste design concept did not affect this typicality-based preference or purchase intention for zero-waste dresses. They also demonstrated greater overall aesthetic preferences for long than short zero-waste dresses. Design typicality moderated this effect such that aesthetic preferences and purchase intentions were greater for long than short-length dresses when the zero-waste dress design was typical. When the design was atypical, purchase intentions were greater for short than long dresses.

Research limitations/implications

Typicality is critical in consumers’ aesthetic preferences and purchase intentions for zero-waste apparel.

Originality/value

The study focused on zero-waste dress typicality as a critical factor in consumers’ preference formation and purchase intentions. Additionally, it investigated dress length preferences within typical and atypical designs.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 16