Search results

1 – 10 of 458
Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 January 2024

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang and Haibo Ji

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual…

Abstract

Purpose

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.

Design/methodology/approach

The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.

Findings

The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.

Originality/value

Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 December 2023

Qing Zhou, Yuanqing Liu, Xiaofeng Liu and Guoping Cai

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly…

Abstract

Purpose

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly onboard fuel of the space robot, this paper aims to present a novel post-capture detumbling strategy.

Design/methodology/approach

Actuated by the joint rotations of the manipulator, the combined system is driven from three-axis tumbling state to uniaxial rotation about its maximum principal axis. Only unidirectional thrust perpendicular to the axis is needed to slow down the uniaxial rotation, thus saving the thruster fuel. The optimization problem of the collision-free detumbling trajectory of the space robot is described, and it is optimized by the particle swarm optimization algorithm.

Findings

The numerical simulation results show that along the trajectory planned by the detumbling strategy, the maneuver of the manipulator can precisely drive the combined system to rotate around its maximum principal axis, and the final kinetic energy of the combined system is smaller than the initial. The unidirectional thrust and the lower kinetic energy can ensure the fuel-saving in the subsequent detumbling stage.

Originality/value

This paper presents a post-capture detumbling strategy to drive the combined system from three-axis tumbling state to uniaxial rotation about its maximum principal axis by redistributing the angular momentum of the parts of the combined system. The strategy reduces the thrust torque for detumbling to effectively save the thruster fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 May 2022

Priyaranjan Biswal and Prases Kumar Mohanty

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to…

Abstract

Purpose

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to present details about the mechanical formation and a new conceptual elliptical trajectory generation discussed throughout the paper of the quadruped robot.

Design/methodology/approach

Initially, a realistic CAD model of the four-legged robot is developed in Solidwork-2019. The proposed model’s forward and inverse kinematics equations are deduced using Denavit–Hartenberg parameters. Based on geometry and kinematics, manipulability and obstacle avoidance are investigated. A method of galloping trajectory is proposed for aiming the increase of upright direction impulse, which is produced by ground reaction force at each step frequency. Furthermore, the locomotion equation of the ellipse trajectory is derived by setting transition angle polynomial of free-fall phase, stance phase and swing phase and the constraints.

Findings

Finally, a successive simulation on a 2D sagittal plane is performed to check and verify the usefulness of the proposed trajectory. Before the development of the full quadruped, a single prototype leg is generated for experimental verification of the dynamic simulations.

Originality/value

The proposed trajectory is novel in that it uses force tracking control, which is intended to improve the quadruped robot’s robustness and stability.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2024

Hangyue Zhang, Yanchu Yang and Rong Cai

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further…

Abstract

Purpose

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further ascent motion after airborne launching. In terms of unmanned aerial vehicles (UAVs), the tailspin state and the charge-out process with an anti-tailspin parachute-assisted suspending are analyzed. Then, the authors conduct trajectory optimization simulations for the long-distance gliding process.

Design/methodology/approach

The balloon kinematics model and the parachute Kane multibody dynamic model are established. Using steady-state tailspin to reduced-order analysis and achieving change-out simulation by parachute suspension dynamic model. A reentry optimization control problem is developed and the Radau pseudo-spectral method is used to calculate the glide trajectory.

Findings

The established dynamic model and trajectory optimization method can effectively simulate the motion process of balloons and UAVs. The system mass reduction for launching UAVs will not cause damage to the balloon structure. The anti-tailspin parachute can reduce the UAV attack angles effectively. The UAV can glide to the designated target position by adjusting the attack angle and sideslip angle. The farthest flight distance after launching from 20 km height is 94 km and the gliding time is 40 min, which demonstrates the potential application advantage of high-altitude launching.

Practical implications

The research content and related conclusions of this article achieve a closed-loop analysis of the flight mission chain for the “balloon-borne UAV system,” which provides simulation references for relevant balloon launching experiments.

Originality/value

This paper establishes a complete set of numerical simulation models and can effectively analyze various postlaunching behaviors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 458